ﻻ يوجد ملخص باللغة العربية
We present a statistical model of the selection function of cold neutral gas in high-redshift (z~2.5) absorption systems. The model is based on the canonical two-phase model of the neutral gas in the interstellar medium and contains only one parameter for which we do not have direct observational priors: namely the central pressure (P*) of an L* halo at z=2.5. Using observations of the fraction of cold gas absorption in strong HI-selected absorbers, we are able to constrain P*. The model simultaneously reproduces the column density distributions of HI and H$_2$, and we derive an expected total incidence of cold gas at z~2.5 of $l_{CNM} = 12times 10^{-3}$. Compared to recent measurements of the incidence of CI-selected absorbers (EW$_{CI,1560}$ > 0.4 {AA}), the value of $l_{CNM}$ from our model indicates that only ~15% of the total cold gas would lead to strong CI absorption (EW > 0.4 {AA}). Nevertheless, CI lines are extremely useful probes of the cold gas as they are relatively easy to detect and provide direct constraints on the physical conditions. Lastly, our model self-consistently reproduces the fraction of cold gas absorbers as a function of N(HI).
Dynamic and thermal processes regulate the structure of the multi-phase interstellar medium (ISM), and ultimately establish how galaxies evolve through star formation. Thus, to constrain ISM models and better understand the interplay of these process
We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic H{sc i} 21cm absorption towards the quasar B0438$-$436, yielding the detection of wide, weak H{sc i} 21cm absorption, with a velocity-integrated H{sc i} 21cm optical depth of
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z >= 3, utilising a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman-alph
We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Multi-wavelength studies were performed combining optical absorption l
Two major questions in galaxy evolution are how star-formation on small scales leads to global scaling laws and how galaxies acquire sufficient gas to sustain their star formation rates. HI observations with high angular resolution and with sensitivi