ترغب بنشر مسار تعليمي؟ اضغط هنا

Hausdorff dimension of Cantor intersections for coupled horseshoe maps

105   0   0.0 ( 0 )
 نشر من قبل Yoshitaka Saiki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a model to provide a hands-on, elementary understanding of chaotic dynamics in dimension 3, we introduce a $C^2$-open set of diffeomorphisms of whose cross sections are Cantor sets; the intersection of the unstable and stable sets contains a fractal set of Hausdorff dimension nearly $1$. Our proof employs the thicknesses of Cantor sets.



قيم البحث

اقرأ أيضاً

We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
76 - Yimin Wang 2021
In this paper, we consider the renormalization operator $mathcal R$ for multimodal maps. We prove the renormalization operator $mathcal R$ is a self-homeomorphism on any totally $mathcal R$-invariant set. As a corollary, we prove the existence of the full renormalization horseshoe for multimodal maps.
196 - Olga Lukina 2014
In this paper, we study the Hausdorff and the box dimensions of closed invariant subsets of the space of pointed trees, equipped with a pseudogroup action. This pseudogroup dynamical system can be regarded as a generalization of a shift space. We sho w that the Hausdorff dimension of the space of pointed trees is infinite, and the union of closed invariant subsets with dense orbit and non-equal Hausdorff and box dimensions is dense in the space of pointed trees. We apply our results to the problem of embedding laminations into differentiable foliations of smooth manifolds. To admit such an embedding, a lamination must satisfy at least the following two conditions: first, it must admit a metric and a foliated atlas, such that the generators of the holonomy pseudogroup, associated to the atlas, are bi-Lipschitz maps relative to the metric. Second, it must admit an embedding into a manifold, which is a bi-Lipschitz map. A suspension of the pseudogroup action on the space of pointed graphs gives an example of a lamination where the first condition is satisfied, and the second one is not satisfied, with Hausdorff dimension of the space of pointed trees being the obstruction to the existence of a bi-Lipschitz embedding.
190 - Nuno Luzia 2020
We compute the Hausdorff dimension of limit sets generated by 3-dimensional self-affine mappings with diagonal matrices of the form A_{ijk}=Diag(a_{ijk}, b_{ij}, c_{i}), where 0<a_{ijk}le b_{ij}le c_i<1. By doing so we show that the variational principle for the dimension holds for this class.
A function which is transcendental and meromorphic in the plane has at least two singular values. On one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either $2$ or $1/2$. On the other hand, the Hausdorff dimension of escaping sets of Speiser functions can attain every number in $[0,2]$ (cf. cite{ac1}). In this paper, we show that number of singular values which is needed to attain every Hausdorff dimension of escaping sets is not more than $4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا