Reducing the CNOT count for Clifford+T circuits on NISQ architectures


الملخص بالإنكليزية

While mapping a quantum circuit to the physical layer one has to consider the numerous constraints imposed by the underlying hardware architecture. Connectivity of the physical qubits is one such constraint that restricts two-qubit operations such as CNOT to connected qubits. SWAP gates can be used to place the logical qubits on admissible physical qubits, but they entail a significant increase in CNOT-count, considering the fact that each SWAP gate can be implemented by 3 CNOT gates. In this paper we consider the problem of reducing the CNOT-count in Clifford+T circuits on connectivity constrained architectures such as noisy intermediate-scale quantum (NISQ) (Preskill, 2018) computing devices. We slice the circuit at the position of Hadamard gates and build the intermediate portions. We investigated two kinds of partitioning - (i) a simple method of partitioning the gates of the input circuit based on the locality of H gates and (ii) a second method of partitioning the phase polynomial of the input circuit. The intermediate {CNOT,T} sub-circuits are synthesized using Steiner trees, significantly improving on the methods introduced by Nash, Gheorghiu, Mosca[2020] and Kissinger, de Griend[2019]. We compared the performance of our algorithms while mapping different benchmark circuits as well as random circuits to some popular architectures such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen, 16-qubit IBM QX5 and 20-qubit IBM Tokyo. We found that for both the benchmark and random circuits our first algorithm that uses the simple slicing technique dramatically reduces the CNOT-count compared to naively using SWAP gates. Our second slice-and-build algorithm also performs very well for benchmark circuits.

تحميل البحث