ﻻ يوجد ملخص باللغة العربية
Accelerating learning processes for complex tasks by leveraging previously learned tasks has been one of the most challenging problems in reinforcement learning, especially when the similarity between source and target tasks is low. This work proposes REPresentation And INstance Transfer (REPAINT) algorithm for knowledge transfer in deep reinforcement learning. REPAINT not only transfers the representation of a pre-trained teacher policy in the on-policy learning, but also uses an advantage-based experience selection approach to transfer useful samples collected following the teacher policy in the off-policy learning. Our experimental results on several benchmark tasks show that REPAINT significantly reduces the total training time in generic cases of task similarity. In particular, when the source tasks are dissimilar to, or sub-tasks of, the target tasks, REPAINT outperforms other baselines in both training-time reduction and asymptotic performance of return scores.
The successful application of general reinforcement learning algorithms to real-world robotics applications is often limited by their high data requirements. We introduce Regularized Hierarchical Policy Optimization (RHPO) to improve data-efficiency
Reinforcement Learning (RL) is a key technique to address sequential decision-making problems and is crucial to realize advanced artificial intelligence. Recent years have witnessed remarkable progress in RL by virtue of the fast development of deep
Reinforcement learning (RL) is widely used in autonomous driving tasks and training RL models typically involves in a multi-step process: pre-training RL models on simulators, uploading the pre-trained model to real-life robots, and fine-tuning the w
Deep reinforcement learning (deep RL) holds the promise of automating the acquisition of complex controllers that can map sensory inputs directly to low-level actions. In the domain of robotic locomotion, deep RL could enable learning locomotion skil
This paper proposes adversarial attacks for Reinforcement Learning (RL) and then improves the robustness of Deep Reinforcement Learning algorithms (DRL) to parameter uncertainties with the help of these attacks. We show that even a naively engineered