ﻻ يوجد ملخص باللغة العربية
We study a stochastic SIS epidemic dynamics on network, under the effect of a Markovian regime-switching. We first prove the existence of a unique global positive solution, and find a positive invariant set for the system. Then, we find sufficient conditions for a.s. extinction and stochastic permanence, showing also their relation with the stationary probability distribution of the Markov chain that governs the switching. We provide an asymptotic lower bound for the time average of the sample-path solution under the conditions ensuring stochastic permanence. From this bound, we are able to prove the existence of an invariant probability measure if the condition of stochastic permanence holds. Under a different condition, we prove the positive recurrence and the ergodicity of the regime-switching diffusion.
In this paper, we investigate the global existence of almost surely positive solution to a stochastic Nicholsons blowflies delay differential equation with regime switching, and give the estimation of the path. The results presented in this paper ext
In this paper, a stochastic Gilpin-Ayala population model with regime switching and white noise is considered. All parameters are influenced by stochastic perturbations. The existence of global positive solution, asymptotic stability in probability,
Here, we consider an SIS epidemic model where the individuals are distributed on several distinct patches. We construct a stochastic model and then prove that it converges to a deterministic model as the total population size tends to infinity. Furth
In this paper we consider a class of {it conditional McKean-Vlasov SDEs} (CMVSDE for short). Such an SDE can be considered as an extended version of McKean-Vlasov SDEs with common noises, as well as the general version of the so-called {it conditiona
Given a bounded $mathcaligr{C}^2$ domain $Gsubset{mathbb{R}}^m$, functions $ginmathcaligr{C}(partial G,{mathbb{R}})$ and $hinmathcaligr {C}(bar{G},{mathbb{R}}setminus{0})$, let $u$ denote the unique viscosity solution to the equation $-2Delta_{infty}