ﻻ يوجد ملخص باللغة العربية
A reduction procedure for stochastic differential equations based on stochastic symmetries including Girsanov random transformations is proposed. In this setting, a new notion of reconstruction is given, involving the expectation values of functionals of solution to the SDE and a reconstruction theorem for general stochastic symmetries is proved. Moreover, the notable case of reduction under the closed subclass of quasi Doob transformations is presented. The theoretical results are applied to stochastic models relevant in the applications.
Aiming at enlarging the class of symmetries of an SDE, we introduce a family of stochastic transformations able to change also the underlying probability measure exploiting Girsanov Theorem and we provide new determining equations for the infinitesim
We prove that reconstruction in the $k$-colouring model occurs strictly below the threshold for freezing for large $k$.
Stochastic symmetries and related invariance properties of finite dimensional SDEs driven by general cadlag semimartingales taking values in Lie groups are defined and investigated. The considered set of SDEs, first introduced by S. Cohen, includes a
We consider two-dimensional marked point processes which are Gibbsian with a two-body-potential U. U is supposed to have an internal continuous symmetry. We show that under suitable continuity conditions the considered processes are invariant under t
We study the one-dimensional asymmetric simple exclusion process on the lattice ${1,dots,N}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the