ﻻ يوجد ملخص باللغة العربية
Exploiting the physics of nanoelectronic devices is a major lead for implementing compact, fast, and energy efficient artificial intelligence. In this work, we propose an original road in this direction, where assemblies of spintronic resonators used as artificial synapses can classify an-alogue radio-frequency signals directly without digitalization. The resonators convert the ra-dio-frequency input signals into direct voltages through the spin-diode effect. In the process, they multiply the input signals by a synaptic weight, which depends on their resonance fre-quency. We demonstrate through physical simulations with parameters extracted from exper-imental devices that frequency-multiplexed assemblies of resonators implement the corner-stone operation of artificial neural networks, the Multiply-And-Accumulate (MAC), directly on microwave inputs. The results show that even with a non-ideal realistic model, the outputs obtained with our architecture remain comparable to that of a traditional MAC operation. Us-ing a conventional machine learning framework augmented with equations describing the physics of spintronic resonators, we train a single layer neural network to classify radio-fre-quency signals encoding 8x8 pixel handwritten digits pictures. The spintronic neural network recognizes the digits with an accuracy of 99.96 %, equivalent to purely software neural net-works. This MAC implementation offers a promising solution for fast, low-power radio-fre-quency classification applications, and a new building block for spintronic deep neural net-works.
Artificial neural networks are a valuable tool for radio-frequency (RF) signal classification in many applications, but digitization of analog signals and the use of general purpose hardware non-optimized for training make the process slow and energe
We consider the generalization problem for a perceptron with binary synapses, implementing the Stochastic Belief-Propagation-Inspired (SBPI) learning algorithm which we proposed earlier, and perform a mean-field calculation to obtain a differential e
Two neurons coupled by unreliable synapses are modeled by leaky integrate-and-fire neurons and stochastic on-off synapses. The dynamics is mapped to an iterated function system. Numerical calculations yield a multifractal distribution of interspike i
We report a transition from asynchronous to oscillatory behaviour in balanced inhibitory networks for class I and II neurons with instantaneous synapses. Collective oscillations emerge for sufficiently connected networks. Their origin is understood i
We show that discrete synaptic weights can be efficiently used for learning in large scale neural systems, and lead to unanticipated computational performance. We focus on the representative case of learning random patterns with binary synapses in si