Characterization of helical Luttinger liquids in microwave stepped-impedance edge resonators


الملخص بالإنكليزية

Coulomb interaction has important consequences on the physics of quantum spin Hall edge states, weakening the topological protection via two-particle scattering and renormalizing both the velocity and charge of collective plasmon modes compared to that of free electrons. Despite these effects, interactions remain difficult to quantify. We propose here simple and robust edge resonator geometries to characterize Coulomb interaction by means of high-frequency measurements. They rely on a transmission line approach, and take advantage of the impedance mismatch between the edge states and their microwave environment.

تحميل البحث