Studies of intrinsic alignment effects mostly focus on the correlations between shapes of galaxies with each other, or with the underlying density field of the large scale structure of the universe. Lately, the correlation between shapes of galaxies and the large-scale velocity field has been proposed as an additional probe of the large scale structure. We use a Fisher forecast to make a prediction for the detectability of this velocity-shape correlation with a combination of redshifts and shapes from the 4MOST+LSST surveys, and radial velocity reconstruction from the Simons Observatory. The signal-to-noise ratio for the velocity-shape (dipole) correlation is 7.4, relative to 44 for the galaxy density-shape (monopole) correlation and for a maximum wavenumber of $0.2: mathrm{Mpc^{-1}}$. Encouraged by these predictions, we discuss two possible applications for the velocity-shape correlation. Measuring the velocity-shape correlation could improve the mitigation of selection effects induced by intrinsic alignments on galaxy clustering. We also find that velocity-shape measurements could potentially aid in determining the scale-dependence of intrinsic alignments when multiple shape measurements of the same galaxies are provided.