ﻻ يوجد ملخص باللغة العربية
The design of an experiment on the spontaneous crystallization of a laser-cooled, but thermal atomic cloud into a hexagonally structured phase is discussed. Atomic interaction is mediated by the dipole potential of an optical lattice formed spontaneously in a multi-mode degenerate cavity from single-mode longitudinal pumping. The length scale of the structure is given by the diffractive dephasing between the spontaneous sidebands and the on-axis pump. A linear stability indicates that the transition can be observed in a cavity of moderate finesse compatible with having the cavity mirrors outside the vacuum cell. A new anti-reflected cell has been assembled for this purpose.
Strong dipole-exchange interactions due to spontaneously produced contaminant states can trigger rapid dephasing in many-body Rydberg ensembles [E. Goldschmidt et al., PRL 116, 113001 (2016)]. Such broadening has serious implications for many proposa
The strong light-matter coupling attainable in optical cavities enables the generation of highly squeezed states of atomic ensembles. It was shown in [Phys. Rev. A 66, 022314 (2002)] how an effective one-axis twisting Hamiltonian can be realized in a
Quantum light-matter interfaces, based upon ensembles of cold atoms or other quantum emitters, are a vital platform for diverse quantum technologies and the exploration of fundamental quantum phenomena. Most of our understanding and modeling of such
Atomic systems have long provided a useful material platform with unique quantum properties. The efficient light-matter interaction in atomic vapors has led to numerous seminal scientific achievements including accurate and precise metrology and quan
We study the effects of the position of the passive and active cavities on the spontaneous parity-time (PT) symmetry breaking behavior in non-Hermitian coupled cavities array model. We analyze and discuss the energy eigenvalue spectrums and PT symmet