ﻻ يوجد ملخص باللغة العربية
It is shown that generalized trigonometric functions and generalized hyperbolic functions can be transformed from each other. As an application of this transformation, a number of properties for one immediately lead to the corresponding properties for the other. In this way, Mitrinovi{c}-Adamovi{c}-type inequalities, multiple-angle formulas, and double-angle formulas for both can be produced.
Generalized trigonometric functions (GTFs) are simple generalization of the classical trigonometric functions. GTFs are deeply related to the $p$-Laplacian, which is known as a typical nonlinear differential operator. Compared to GTFs with one parame
With respect to generalized trigonometric functions, since the discovery of double-angle formula for a special case by Edmunds, Gurka and Lang in 2012, no double-angle formulas have been found. In this paper, we will establish new double-angle formul
Famous Redheffers inequality is generalized to a class of anti-periodic functions. We apply the novel inequality to the generalized trigonometric functions and establish several Redheffer-type inequalities for these functions.
The well known table of Gradshteyn and Ryzhik contains indefinite and definite integrals of both elementary and special functions. We give proofs of several entries containing integrands with some combination of hyperbolic and trigonometric functions
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev