ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Value of Personalized Word Embeddings

242   0   0.0 ( 0 )
 نشر من قبل Charlie Welch
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce personalized word embeddings, and examine their value for language modeling. We compare the performance of our proposed prediction model when using personalized versus generic word representations, and study how these representations can be leveraged for improved performance. We provide insight into what types of words can be more accurately predicted when building personalized models. Our results show that a subset of words belonging to specific psycholinguistic categories tend to vary more in their representations across users and that combining generic and personalized word embeddings yields the best performance, with a 4.7% relative reduction in perplexity. Additionally, we show that a language model using personalized word embeddings can be effectively used for authorship attribution.



قيم البحث

اقرأ أيضاً

Recent studies have revealed a security threat to natural language processing (NLP) models, called the Backdoor Attack. Victim models can maintain competitive performance on clean samples while behaving abnormally on samples with a specific trigger w ord inserted. Previous backdoor attacking methods usually assume that attackers have a certain degree of data knowledge, either the dataset which users would use or proxy datasets for a similar task, for implementing the data poisoning procedure. However, in this paper, we find that it is possible to hack the model in a data-free way by modifying one single word embedding vector, with almost no accuracy sacrificed on clean samples. Experimental results on sentiment analysis and sentence-pair classification tasks show that our method is more efficient and stealthier. We hope this work can raise the awareness of such a critical security risk hidden in the embedding layers of NLP models. Our code is available at https://github.com/lancopku/Embedding-Poisoning.
We present a simple yet effective approach for learning word sense embeddings. In contrast to existing techniques, which either directly learn sense representations from corpora or rely on sense inventories from lexical resources, our approach can in duce a sense inventory from existing word embeddings via clustering of ego-networks of related words. An integrated WSD mechanism enables labeling of words in context with learned sense vectors, which gives rise to downstream applications. Experiments show that the performance of our method is comparable to state-of-the-art unsupervised WSD systems.
This work lists and describes the main recent strategies for building fixed-length, dense and distributed representations for words, based on the distributional hypothesis. These representations are now commonly called word embeddings and, in additio n to encoding surprisingly good syntactic and semantic information, have been proven useful as extra features in many downstream NLP tasks.
Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve lang uage model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.
104 - Jieyu Zhao , Yichao Zhou , Zeyu Li 2018
Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that refle ct social constructs. To address this concern, in this paper, we propose a novel training procedure for learning gender-neutral word embeddings. Our approach aims to preserve gender information in certain dimensions of word vectors while compelling other dimensions to be free of gender influence. Based on the proposed method, we generate a Gender-Neutral variant of GloVe (GN-GloVe). Quantitative and qualitative experiments demonstrate that GN-GloVe successfully isolates gender information without sacrificing the functionality of the embedding model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا