ﻻ يوجد ملخص باللغة العربية
Many different studies have shown that a wealth of cosmological information resides on small, non-linear scales. Unfortunately, there are two challenges to overcome to utilize that information. First, we do not know the optimal estimator that will allow us to retrieve the maximum information. Second, baryonic effects impact that regime significantly and in a poorly understood manner. Ideally, we would like to use an estimator that extracts the maximum cosmological information while marginalizing over baryonic effects. In this work we show that neural networks can achieve that. We made use of data where the maximum amount of cosmological information is known: power spectra and 2D Gaussian density fields. We also contaminate the data with simplified baryonic effects and train neural networks to predict the value of the cosmological parameters. For this data, we show that neural networks can 1) extract the maximum available cosmological information, 2) marginalize over baryonic effects, and 3) extract cosmological information that is buried in the regime dominated by baryonic physics. We also show that neural networks learn the priors of the data they are trained on. We conclude that a promising strategy to maximize the scientific return of cosmological experiments is to train neural networks on state-of-the-art numerical simulations with different strengths and implementations of baryonic effects.
The redshifted 21-cm signal of neutral Hydrogen is a promising probe into the period of evolution of our Universe when the first stars were formed (Cosmic Dawn), to the period where the entire Universe changed its state from being completely neutral
The large-scale clustering of matter is impacted by baryonic physics, particularly AGN feedback. Modelling or mitigating this impact will be essential for making full use of upcoming measurements of cosmic shear and other large-scale structure probes
We present a simulation-based inference framework using a convolutional neural network to infer dynamical masses of galaxy clusters from their observed 3D projected phase-space distribution, which consists of the projected galaxy positions in the sky
We present a machine-learning photometric redshift analysis of the Kilo-Degree Survey Data Release 3, using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-z
This Science White Paper, prepared in response to the ESA Voyage 2050 call for long-term mission planning, aims to describe the various science possibilities that can be realized with an L-class space observatory that is dedicated to the study of the