ﻻ يوجد ملخص باللغة العربية
Recently Bonisch-Fischbach-Klemm-Nega-Safari discovered, via numerical computation, that the leading asymptotics of the l-loop Banana Feynman amplitude at the large complex structure limit can be described by the Gamma class of a degree (1,...,1) Fano hypersurface F in (P^1)^{l+1}. We confirm this observation by using a Gamma-conjecture type result for F.
Using the Gelfand-Kapranov-Zelevinsku{i} system for the primitive cohomology of an infinite series of complete intersection Calabi-Yau manifolds, whose dimension is the loop order minus one, we completely clarify the analytic structure of all banana
We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behavior of th
The fundamental solution of the Schrodinger equation for a free particle is a distribution. This distribution can be approximated by a sequence of smooth functions. It is defined for each one of these functions, a complex measure on the space of path
We present the result of our computation of the lowest lying meson masses for SU(N) gauge theory in the large $N$ limit (with $N_f/Nlongrightarrow 0$). The final values are given in units of the square root of the string tension, and with errors whic
We present a lattice-QCD calculation of the pion, kaon and $eta_s$ distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using three ensembles with 2+1+1 flavors of highly improved staggered quarks (HIS