ﻻ يوجد ملخص باللغة العربية
Taking advantage of human pose data for understanding human activities has attracted much attention these days. However, state-of-the-art pose estimators struggle in obtaining high-quality 2D or 3D pose data due to occlusion, truncation and low-resolution in real-world un-annotated videos. Hence, in this work, we propose 1) a Selective Spatio-Temporal Aggregation mechanism, named SST-A, that refines and smooths the keypoint locations extracted by multiple expert pose estimators, 2) an effective weakly-supervised self-training framework which leverages the aggregated poses as pseudo ground-truth instead of handcrafted annotations for real-world pose estimation. Extensive experiments are conducted for evaluating not only the upstream pose refinement but also the downstream action recognition performance on four datasets, Toyota Smarthome, NTU-RGB+D, Charades, and Kinetics-50. We demonstrate that the skeleton data refined by our Pose-Refinement system (SSTA-PRS) is effective at boosting various existing action recognition models, which achieves competitive or state-of-the-art performance.
We address the problem of temporal localization of repetitive activities in a video, i.e., the problem of identifying all segments of a video that contain some sort of repetitive or periodic motion. To do so, the proposed method represents a video by
State-of-the-art 3D human pose estimation approaches typically estimate pose from the entire RGB image in a single forward run. In this paper, we develop a post-processing step to refine 3D human pose estimation from body part patches. Using local pa
We address human action recognition from multi-modal video data involving articulated pose and RGB frames and propose a two-stream approach. The pose stream is processed with a convolutional model taking as input a 3D tensor holding data from a sub-s
Video-based human pose estimation in crowded scenes is a challenging problem due to occlusion, motion blur, scale variation and viewpoint change, etc. Prior approaches always fail to deal with this problem because of (1) lacking of usage of temporal
Human life is populated with articulated objects. Current Category-level Articulation Pose Estimation (CAPE) methods are studied under the single-instance setting with a fixed kinematic structure for each category. Considering these limitations, we r