ﻻ يوجد ملخص باللغة العربية
With the growth of demands for quasi-instantaneous communication services such as real-time video streaming, cloud gaming, and industry 4.0 applications, multi-constraint Traffic Engineering (TE) becomes increasingly important. While legacy TE management planes have proven laborious to deploy, Segment Routing (SR) drastically eases the deployment of TE paths and thus became the most appropriate technology for many operators. The flexibility of SR sparked demands in ways to compute more elaborate paths. In particular, there exists a clear need in computing and deploying Delay-Constrained Least-Cost paths (DCLC) for real-time applications requiring both low delay and high bandwidth routes. However, most current DCLC solutions are heuristics not specifically tailored for SR. In this work, we leverage both inherent limitations in the accuracy of delay measurements and an operational constraint added by SR. We include these characteristics in the design of BEST2COP, an exact but efficient ECMP-aware algorithm that natively solves DCLC in SR domains. Through an extensive performance evaluation, we first show that BEST2COP scales well even in large random networks. In real networks having up to thousands of destinations, our algorithm returns all DCLC solutions encoded as SR paths in way less than a second.
Multicast is the ability of a communication network to accept a single message from an application and to deliver copies of the message to multiple recipients at different location. With the development of Internet, Multicast is widely applied in all
Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of e.g. (possibly, unmanned) vehicles and humans where, despite a lack of co
Context. Extinction and emission of dust models need for observational constraints to be validated. The coreshine phenomenon has already shown the importance of scattering in the 3 to 5 micron range and its ability to validate dust properties for den
Due to the presence of buffers in the inner network nodes, each congestion event leads to buffer queueing and thus to an increasing end-to-end delay. In the case of delay sensitive applications, a large delay might not be acceptable and a solution to
We present an intrinsic AGN SED extending from the optical to the submm, derived with a sample of unobscured, optically luminous (vLv(5100)>10^43.5 erg/s) QSOs at z<0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing th