ﻻ يوجد ملخص باللغة العربية
Quaternion singular value decomposition (QSVD) is a robust technique of digital watermarking which can extract high quality watermarks from watermarked images with low distortion. In this paper, QSVD technique is further investigated and an efficient robust watermarking scheme is proposed. The improved algebraic structure-preserving method is proposed to handle the problem of explosion of complexity occurred in the conventional QSVD design. Secret information is transmitted blindly by incorporating in QSVD two new strategies, namely, coefficient pair selection and adaptive embedding. Unlike conventional QSVD which embeds watermarks in a single imaginary unit, we propose to adaptively embed the watermark into the optimal hiding position using the Normalized Cross-Correlation (NC) method. This avoids the selection of coefficient pair with less correlation, and thus, it reduces embedding impact by decreasing the maximum modification of coefficient values. In this way, compared with conventional QSVD, the proposed watermarking strategy avoids more modifications to a single color image layer and a better visual quality of the watermarked image is observed. Meanwhile, adaptive QSVD resists some common geometric attacks, and it improves the robustness of conventional QSVD. With these improvements, our method outperforms conventional QSVD. Its superiority over other state-of-the-art methods is also demonstrated experimentally.
Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image
Randomized algorithms provide solutions to two ubiquitous problems: (1) the distributed calculation of a principal component analysis or singular value decomposition of a highly rectangular matrix, and (2) the distributed calculation of a low-rank ap
The image nonlocal self-similarity (NSS) prior refers to the fact that a local patch often has many nonlocal similar patches to it across the image. In this paper we apply such NSS prior to enhance the robust quaternion matrix completion (QMC) method
Two-dimensional singular decomposition (2DSVD) has been widely used for image processing tasks, such as image reconstruction, classification, and clustering. However, traditional 2DSVD algorithm is based on the mean square error (MSE) loss, which is
In this paper, we propose a computationally efficient iterative algorithm for proper orthogonal decomposition (POD) using random sampling based techniques. In this algorithm, additional rows and columns are sampled and a merging technique is used to