ﻻ يوجد ملخص باللغة العربية
We report theoretical results of the electric dipole moment (EDM) of $^{210}$Fr which arises from the interaction of the EDM of an electron with the internal electric field in an atom and the scalar-pseudoscalar electron-nucleus interaction; the two dominant sources of CP violation in this atom. Employing the relativistic coupled-cluster theory, we evaluate the enhancement factors for these two CP violating interactions to an accuracy of about 3% and analyze the contributions of the many-body effects. These two quantities in combination with the projected sensitivity of the $^{210}$Fr EDM experiment provide constraints on new physics beyond the Standard Model. Particularly, we demonstrate that their precise values are necessary to account for the effect of the bottom quark in models in which the Higgs sector is augmented by nonstandard Yukawa interactions such as the two-Higgs doublet model.
We demonstrate that electron electric dipole moment experiments with molecules in paramagnetic state are sensitive to $P,T$-violating nuclear forces and other $CP$-violating parameters in the hadronic sector. These experiments, in particular, measure
Contributions to B - bar B mixing from physics beyond the standard model may be detected from CP-violating asymmetries in B decays. There exists the possibility of large new contributions that cannot be detected by first generation experiments becaus
We derive an effective action of the bosonic sector of the Standard Model by integrating out the fermionic degrees of freedom in the worldline approach. The CP violation due to the complex phase in the CKM matrix gives rise to CP-violating operators
We review our expectations in the last year before the LHC commissioning.
We present the invited lectures given at the Third IDPASC School which took place in Santiago de Compostela in January 2013. The students attending the school had very different backgrounds, some of them were doing their Ph.D. in experimental particl