ﻻ يوجد ملخص باللغة العربية
Obtaining a better understanding of intermediate-mass black holes (IMBHs) is crucial, as their properties could shed light on the origin and growth of their supermassive counterparts. Massive star-forming clumps, which are present in a large fraction of massive galaxies at $z sim$ 1-3, are amongst the venues wherein IMBHs could reside. We perform a series of Fokker-Planck simulations to explore the occurrence of tidal disruption (TD) and gravitational wave (GW) events about an IMBH in a massive star-forming clump, modelling the latter so that its mass ($10^8 ,{rm M}_{odot}$) and effective radius ($100$ pc) are consistent with the properties of both observed and simulated clumps. We find that the TD and GW event rates are in the ranges $10^{-6}$-$10^{-5}$ and $10^{-8}$-$10^{-7}$ yr$^{-1}$, respectively, depending on the assumptions for the initial inner density profile of the system ($rho propto r^{-2}$ or $propto r^{-1}$) and the initial mass of the central IMBH ($10^5$ or $10^3,{rm M}_{odot}$). By integrating the GW event rate over $z$ = 1-3, we expect that the Laser Interferometer Space Antenna will be able to detect $sim$2 GW events per yr coming from these massive clumps; the intrinsic rate of TD events from these systems amounts instead to a few $10^3$ per yr, a fraction of which will be observable by, e.g. the Square Kilometre Array and the Advanced Telescope for High Energy Astrophysics. In conclusion, our results support the idea that the forthcoming GW and electromagnetic facilities may have the unprecedented opportunity of unveiling the lurking population of IMBHs.
We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed stud
In this paper we show in a covariant and gauge invariant way that in general relativity, tidal forces are actually a hidden form of gravitational waves. This must be so because gravitational effects cannot occur faster than the speed of light. Any tw
We present a new strategy to optimise the electromagnetic follow-up of gravitational wave triggers. This method is based on the widely used galaxy targeting approach where we add the stellar mass of galaxies in order to prioritise the more massive ga
Assessing the probability that two or more gravitational waves (GWs) are lensed images of the same source requires an understanding of the image properties, including their relative phase shifts in strong lensing (SL). For non-precessing, circular bi
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars