ترغب بنشر مسار تعليمي؟ اضغط هنا

Can We Trust Deep Speech Prior?

187   0   0.0 ( 0 )
 نشر من قبل Lantian Li Mr.
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, speech enhancement (SE) based on deep speech prior has attracted much attention, such as the variational auto-encoder with non-negative matrix factorization (VAE-NMF) architecture. Compared to conventional approaches that represent clean speech by shallow models such as Gaussians with a low-rank covariance, the new approach employs deep generative models to represent the clean speech, which often provides a better prior. Despite the clear advantage in theory, we argue that deep priors must be used with much caution, since the likelihood produced by a deep generative model does not always coincide with the speech quality. We designed a comprehensive study on this issue and demonstrated that based on deep speech priors, a reasonable SE performance can be achieved, but the results might be suboptimal. A careful analysis showed that this problem is deeply rooted in the disharmony between the flexibility of deep generative models and the nature of the maximum-likelihood (ML) training.



قيم البحث

اقرأ أيضاً

66 - Yapeng Tian , Chenliang Xu , 2019
Deep convolutional neural networks are known to specialize in distilling compact and robust prior from a large amount of data. We are interested in applying deep networks in the absence of training dataset. In this paper, we introduce deep audio prio r (DAP) which leverages the structure of a network and the temporal information in a single audio file. Specifically, we demonstrate that a randomly-initialized neural network can be used with carefully designed audio prior to tackle challenging audio problems such as universal blind source separation, interactive audio editing, audio texture synthesis, and audio co-separation. To understand the robustness of the deep audio prior, we construct a benchmark dataset emph{Universal-150} for universal sound source separation with a diverse set of sources. We show superior audio results than previous work on both qualitative and quantitative evaluations. We also perform thorough ablation study to validate our design choices.
Various information factors are blended in speech signals, which forms the primary difficulty for most speech information processing tasks. An intuitive idea is to factorize speech signal into individual information factors (e.g., phonetic content an d speaker trait), though it turns out to be highly challenging. This paper presents a speech factorization approach based on a novel factorial discriminative normalization flow model (factorial DNF). Experiments conducted on a two-factor case that involves phonetic content and speaker trait demonstrates that the proposed factorial DNF has powerful capability to factorize speech signals and outperforms several comparative models in terms of information representation and manipulation.
Deep clustering (DC) and utterance-level permutation invariant training (uPIT) have been demonstrated promising for speaker-independent speech separation. DC is usually formulated as two-step processes: embedding learning and embedding clustering, wh ich results in complex separation pipelines and a huge obstacle in directly optimizing the actual separation objectives. As for uPIT, it only minimizes the chosen permutation with the lowest mean square error, doesnt discriminate it with other permutations. In this paper, we propose a discriminative learning method for speaker-independent speech separation using deep embedding features. Firstly, a DC network is trained to extract deep embedding features, which contain each sources information and have an advantage in discriminating each target speakers. Then these features are used as the input for uPIT to directly separate the different sources. Finally, uPIT and DC are jointly trained, which directly optimizes the actual separation objectives. Moreover, in order to maximize the distance of each permutation, the discriminative learning is applied to fine tuning the whole model. Our experiments are conducted on WSJ0-2mix dataset. Experimental results show that the proposed models achieve better performances than DC and uPIT for speaker-independent speech separation.
As the cornerstone of other important technologies, such as speech recognition and speech synthesis, speech enhancement is a critical area in audio signal processing. In this paper, a new deep learning structure for speech enhancement is demonstrated . The model introduces a full attention mechanism to a bidirectional sequence-to-sequence method to make use of latent information after each focal frame. This is an extension of the previous attention-based RNN method. The proposed bidirectional attention-based architecture achieves better performance in terms of speech quality (PESQ), compared with OM-LSA, CNN-LSTM, T-GSA and the unidirectional attention-based LSTM baseline.
The calculation of most objective speech intelligibility assessment metrics requires clean speech as a reference. Such a requirement may limit the applicability of these metrics in real-world scenarios. To overcome this limitation, we propose a deep learning-based non-intrusive speech intelligibility assessment model, namely STOI-Net. The input and output of STOI-Net are speech spectral features and predicted STOI scores, respectively. The model is formed by the combination of a convolutional neural network and bidirectional long short-term memory (CNN-BLSTM) architecture with a multiplicative attention mechanism. Experimental results show that the STOI score estimated by STOI-Net has a good correlation with the actual STOI score when tested with noisy and enhanced speech utterances. The correlation values are 0.97 and 0.83, respectively, for the seen test condition (the test speakers and noise types are involved in the training set) and the unseen test condition (the test speakers and noise types are not involved in the training set). The results confirm the capability of STOI-Net to accurately predict the STOI scores without referring to clean speech.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا