ﻻ يوجد ملخص باللغة العربية
The Milky Way galaxy is surrounded by a circumgalactic medium (CGM) that may play a key role in galaxy evolution as the source of gas for star formation and a repository of metals and energy produced by star formation and nuclear activity. The CGM may also be a repository for baryons seen in the early universe, but undetected locally. The CGM has an ionized component at temperatures near $2 times 10^{6}$~K studied primarily in the soft X-ray band. Here we report a survey of the southern Galactic sky with a soft X-ray spectrometer optimized to study diffuse soft X-ray emission. The X-ray emission is best fit with a disc-like model based on the radial profile of the surface density of molecular hydrogen, a tracer of star formation, suggesting that the X-ray emission is predominantly from hot plasma produced via stellar feedback. Strong variations in the X-ray emission on angular scales of $sim10^{circ}$ indicate that the CGM is clumpy. Addition of an extended, and possibly massive, halo component is needed to match the halo density inferred from other observations.
We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass halos hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, an
The halo of the Milky Way provides a laboratory to study the properties of the shocked hot gas that is predicted by models of galaxy formation. There is observational evidence of energy injection into the halo from past activity in the nucleus of the
Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called circumgalactic medium (CGM). To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we performed a set of hydrod
We combine the Santa-Cruz Semi-Analytic Model (SAM) for galaxy formation and evolution with the circumgalactic medium (CGM) model presented in Faerman et al. (2020) to explore the CGM properties of $L^{*}$ galaxies. We use the SAM to generate a sampl
We estimate the detectability of X-ray metal-line emission from the circumgalactic medium (CGM) of galaxies over a large halo mass range ($mathrm{M}_{mathrm{200c}} =10^{11.5}$-$10^{14.5},mathrm{M}_{odot}$) using the EAGLE simulations. With the XRISM