ترغب بنشر مسار تعليمي؟ اضغط هنا

Interference Reduction in Virtual Cell Optimization

120   0   0.0 ( 0 )
 نشر من قبل Michal Yemini
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Virtual cell optimization clusters cells into neighborhoods and performs optimized resource allocation over each neighborhood. In prior works we proposed resource allocation schemes to mitigate the interference caused by transmissions in the same virtual cell. This work aims at mitigating both the interference caused by the transmissions of users in the same virtual cell and the interference between transmissions in different virtual cells. We propose a resource allocation technique that reduces the number of users that cannot achieve their constant guaranteed bit rate, i.e., the unsatisfied users, in an uplink virtual cell system with cooperative decoding. The proposed scheme requires only the knowledge of the number of users each base station serves and relies on creating the interference graph between base stations at the edges of virtual cells. Allocation of frequency bands to users is based on the number of users each base station would serve in a non cooperative setup. We evaluate the performance of our scheme for a mmWave system. Our numerical results show that our scheme decreases the number of users in the system whose rate falls below the guaranteed rate, set to $128$Kpbs, $256$Kpbs or $512$Kpbs, when compared with our previously proposed optimization methods.



قيم البحث

اقرأ أيضاً

In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi on. The lognormal approximation is vital because it allows tractable network performance analysis with closed-form expressions. The derived condition, under which the lognormal approximation applies, does not pose particular requirements on the shapes/sizes of user equipment (UE) distribution areas as in previous works. Instead, our results show that if a path loss related random variable (RV) associated with the UE distribution area, has a low ratio of the 3rd absolute moment to the variance, the lognormal approximation will hold. Analytical and simulation results show that the derived condition can be readily satisfied in future dense/ultra-dense SCNs, indicating that our conclusions are very useful for network performance analysis of the 5th generation (5G) systems with more general cell deployment beyond the widely used Poisson deployment.
Approximate Symbol error rate (SER), outage probability and rate expressions are derived for receive diversity system employing optimum combining when both the desired and the interfering signals are subjected to Rician fading, for the cases of a) eq ual power uncorrelated interferers b) unequal power interferers c) interferer correlation. The derived expressions are applicable for an arbitrary number of receive antennas and interferers and for any quadrature amplitude modulation (QAM) constellation. Furthermore, we derive a simple closed form expression for SER in the interference-limited regime, for the special case of Rayleigh faded interferers. A close match is observed between the SER, outage probability and rate results obtained through the derived analytical expressions and the ones obtained from Monte-Carlo simulations.
Bluetooth Low Energy (BLE) is a short-range data transmission technology that is used for multimedia file sharing, home automation, and internet-of-things application. In this work, we perform packet error rate (PER) measurement and RF testing of BLE receiver in the harsh electromagnetic environment and in presence of RF interference. We check the PER performance in the line-of-sight (LOS) and non-line-of-sight (NLOS) scenario in absence of any interfering signal and in presence of wideband WLAN interference. The BLE PER measurements are conducted in a large reverberation chamber which is a rich scattering environment. Software-defined-radio has been used to create BLE communication link for PER measurement in LOS and NLOS configuration. The BLE PER is measured both in the presence and in absence of WLAN interference. Our measurement results show a higher PER for uncoded BLE PHY modes in NLOS channel condition and in presence of wideband interference. Whereas coded BLE PHY modes i.e. LE500K and LE125K are robust to interference with lower PER measurements.
In this paper, we analytically derive an upper bound on the error in approximating the uplink (UL) single-cell interference by a lognormal distribution in frequency division multiple access (FDMA) small cell networks (SCNs). Such an upper bound is me asured by the Kolmogorov Smirnov (KS) distance between the actual cumulative density function (CDF) and the approximate CDF. The lognormal approximation is important because it allows tractable network performance analysis. Our results are more general than the existing works in the sense that we do not pose any requirement on (i) the shape and/or size of cell coverage areas, (ii) the uniformity of user equipment (UE) distribution, and (iii) the type of multi-path fading. Based on our results, we propose a new framework to directly and analytically investigate a complex network with practical deployment of multiple BSs placed at irregular locations, using a power lognormal approximation of the aggregate UL interference. The proposed network performance analysis is particularly useful for the 5th generation (5G) systems with general cell deployment and UE distribution.
178 - Wanli Ni , Xiao Liu , Yuanwei Liu 2020
This paper proposes a novel framework of resource allocation in intelligent reflecting surface (IRS) aided multi-cell non-orthogonal multiple access (NOMA) networks, where a sum-rate maximization problem is formulated. To address this challenging mix ed-integer non-linear problem, we decompose it into an optimization problem (P1) with continuous variables and a matching problem (P2) with integer variables. For the non-convex optimization problem (P1), iterative algorithms are proposed for allocating transmit power, designing reflection matrix, and determining decoding order by invoking relaxation methods such as convex upper bound substitution, successive convex approximation and semidefinite relaxation. For the combinational problem (P2), swap matching-based algorithms are proposed to achieve a two-sided exchange-stable state among users, BSs and subchannels. Numerical results are provided for demonstrating that the sum-rate of the NOMA networks is capable of being enhanced with the aid of the IRS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا