ﻻ يوجد ملخص باللغة العربية
Virtual cell optimization clusters cells into neighborhoods and performs optimized resource allocation over each neighborhood. In prior works we proposed resource allocation schemes to mitigate the interference caused by transmissions in the same virtual cell. This work aims at mitigating both the interference caused by the transmissions of users in the same virtual cell and the interference between transmissions in different virtual cells. We propose a resource allocation technique that reduces the number of users that cannot achieve their constant guaranteed bit rate, i.e., the unsatisfied users, in an uplink virtual cell system with cooperative decoding. The proposed scheme requires only the knowledge of the number of users each base station serves and relies on creating the interference graph between base stations at the edges of virtual cells. Allocation of frequency bands to users is based on the number of users each base station would serve in a non cooperative setup. We evaluate the performance of our scheme for a mmWave system. Our numerical results show that our scheme decreases the number of users in the system whose rate falls below the guaranteed rate, set to $128$Kpbs, $256$Kpbs or $512$Kpbs, when compared with our previously proposed optimization methods.
In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi
Approximate Symbol error rate (SER), outage probability and rate expressions are derived for receive diversity system employing optimum combining when both the desired and the interfering signals are subjected to Rician fading, for the cases of a) eq
Bluetooth Low Energy (BLE) is a short-range data transmission technology that is used for multimedia file sharing, home automation, and internet-of-things application. In this work, we perform packet error rate (PER) measurement and RF testing of BLE
In this paper, we analytically derive an upper bound on the error in approximating the uplink (UL) single-cell interference by a lognormal distribution in frequency division multiple access (FDMA) small cell networks (SCNs). Such an upper bound is me
This paper proposes a novel framework of resource allocation in intelligent reflecting surface (IRS) aided multi-cell non-orthogonal multiple access (NOMA) networks, where a sum-rate maximization problem is formulated. To address this challenging mix