ﻻ يوجد ملخص باللغة العربية
These notes give an introduction to the quantization procedure called geometric quantization. It gives a definition of the mathematical background for its understanding and introductions to classical and quantum mechanics, to differentiable manifolds, symplectic manifolds and the geometry of line bundles and connections. Moreover, these notes are endowed with several exercises and examples.
Deformation quantization conventionally is described in terms of multidifferential operators. Jet manifold technique is well-known provide the adequate formulation of theory of differential operators. We extended this formulation to the multidifferen
The zero locus of a bivariate polynomial $P(x,y)=0$ defines a compact Riemann surface $Sigma$. The fundamental second kind differential is a symmetric $1otimes 1$ form on $Sigmatimes Sigma$ that has a double pole at coinciding points and no other pol
Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field the
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass