ﻻ يوجد ملخص باللغة العربية
We propose first-order methods based on a level-set technique for convex constrained optimization that satisfies an error bound condition with unknown growth parameters. The proposed approach solves the original problem by solving a sequence of unconstrained subproblems defined with different level parameters. Different from the existing level-set methods where the subproblems are solved sequentially, our method applies a first-order method to solve each subproblem independently and simultaneously, which can be implemented with either a single or multiple processors. Once the objective value of one subproblem is reduced by a constant factor, a sequential restart is performed to update the level parameters and restart the first-order methods. When the problem is non-smooth, our method finds an $epsilon$-optimal and $epsilon$-feasible solution by computing at most $O(frac{G^{2/d}}{epsilon^{2-2/d}}ln^3(frac{1}{epsilon}))$ subgradients where $G>0$ and $dgeq 1$ are the growth rate and the exponent, respectively, in the error bound condition. When the problem is smooth, the complexity is improved to $O(frac{G^{1/d}}{epsilon^{1-1/d}}ln^3(frac{1}{epsilon}))$. Our methods do not require knowing $G$, $d$ and any problem dependent parameters.
First-order methods (FOMs) have been widely used for solving large-scale problems. A majority of existing works focus on problems without constraint or with simple constraints. Several recent works have studied FOMs for problems with complicated func
In this paper we study second-order optimality conditions for non-convex set-constrained optimization problems. For a convex set-constrained optimization problem, it is well-known that second-order optimality conditions involve the support function o
Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoreti
Motivated by recent work of Renegar, we present new computational methods and associated computational guarantees for solving convex optimization problems using first-order methods. Our problem of interest is the general convex optimization problem $
In recent years, the success of deep learning has inspired many researchers to study the optimization of general smooth non-convex functions. However, recent works have established pessimistic worst-case complexities for this class functions, which i