ترغب بنشر مسار تعليمي؟ اضغط هنا

Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation

136   0   0.0 ( 0 )
 نشر من قبل Jianyuan Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning matching costs has been shown to be critical to the success of the state-of-the-art deep stereo matching methods, in which 3D convolutions are applied on a 4D feature volume to learn a 3D cost volume. However, this mechanism has never been employed for the optical flow task. This is mainly due to the significantly increased search dimension in the case of optical flow computation, ie, a straightforward extension would require dense 4D convolutions in order to process a 5D feature volume, which is computationally prohibitive. This paper proposes a novel solution that is able to bypass the requirement of building a 5D feature volume while still allowing the network to learn suitable matching costs from data. Our key innovation is to decouple the connection between 2D displacements and learn the matching costs at each 2D displacement hypothesis independently, ie, displacement-invariant cost learning. Specifically, we apply the same 2D convolution-based matching net independently on each 2D displacement hypothesis to learn a 4D cost volume. Moreover, we propose a displacement-aware projection layer to scale the learned cost volume, which reconsiders the correlation between different displacement candidates and mitigates the multi-modal problem in the learned cost volume. The cost volume is then projected to optical flow estimation through a 2D soft-argmin layer. Extensive experiments show that our approach achieves state-of-the-art accuracy on various datasets, and outperforms all published optical flow methods on the Sintel benchmark.



قيم البحث

اقرأ أيضاً

We tackle the problem of estimating flow between two images with large lighting variations. Recent learning-based flow estimation frameworks have shown remarkable performance on image pairs with small displacement and constant illuminations, but cann ot work well on cases with large viewpoint change and lighting variations because of the lack of pixel-wise flow annotations for such cases. We observe that via the Structure-from-Motion (SfM) techniques, one can easily estimate relative camera poses between image pairs with large viewpoint change and lighting variations. We propose a novel weakly supervised framework LIFE to train a neural network for estimating accurate lighting-invariant flows between image pairs. Sparse correspondences are conventionally established via feature matching with descriptors encoding local image contents. However, local image contents are inevitably ambiguous and error-prone during the cross-image feature matching process, which hinders downstream tasks. We propose to guide feature matching with the flows predicted by LIFE, which addresses the ambiguous matching by utilizing abundant context information in the image pairs. We show that LIFE outperforms previous flow learning frameworks by large margins in challenging scenarios, consistently improves feature matching, and benefits downstream tasks.
Video super-resolution (SR) aims to generate a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The generation of accurate correspondence plays a significant role in video SR. It is demonstrated by traditional video SR methods that simultaneous SR of both images and optical flows can provide accurate correspondences and better SR results. However, LR optical flows are used in existing deep learning based methods for correspondence generation. In this paper, we propose an end-to-end trainable video SR framework to super-resolve both images and optical flows. Specifically, we first propose an optical flow reconstruction network (OFRnet) to infer HR optical flows in a coarse-to-fine manner. Then, motion compensation is performed according to the HR optical flows. Finally, compensated LR inputs are fed to a super-resolution network (SRnet) to generate the SR results. Extensive experiments demonstrate that HR optical flows provide more accurate correspondences than their LR counterparts and improve both accuracy and consistency performance. Comparative results on the Vid4 and DAVIS-10 datasets show that our framework achieves the state-of-the-art performance.
Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide e ffective information for optical flow learning. In this paper, we present OccInpFlow, an occlusion-inpainting framework to make full use of occlusion regions. Specifically, a new appearance-flow network is proposed to inpaint occluded flows based on the image content. Moreover, a boundary warp is proposed to deal with occlusions caused by displacement beyond image border. We conduct experiments on multiple leading flow benchmark data sets such as Flying Chairs, KITTI and MPI-Sintel, which demonstrate that the performance is significantly improved by our proposed occlusion handling framework.
In this paper, we propose a unified method to jointly learn optical flow and stereo matching. Our first intuition is stereo matching can be modeled as a special case of optical flow, and we can leverage 3D geometry behind stereoscopic videos to guide the learning of these two forms of correspondences. We then enroll this knowledge into the state-of-the-art self-supervised learning framework, and train one single network to estimate both flow and stereo. Second, we unveil the bottlenecks in prior self-supervised learning approaches, and propose to create a new set of challenging proxy tasks to boost performance. These two insights yield a single model that achieves the highest accuracy among all existing unsupervised flow and stereo methods on KITTI 2012 and 2015 benchmarks. More remarkably, our self-supervised method even outperforms several state-of-the-art fully supervised methods, including PWC-Net and FlowNet2 on KITTI 2012.
127 - Hengli Wang , Rui Fan , Ming Liu 2021
Convolutional neural network (CNN)-based stereo matching approaches generally require a dense cost volume (DCV) for disparity estimation. However, generating such cost volumes is computationally-intensive and memory-consuming, hindering CNN training and inference efficiency. To address this problem, we propose SCV-Stereo, a novel CNN architecture, capable of learning dense stereo matching from sparse cost volume (SCV) representations. Our inspiration is derived from the fact that DCV representations are somewhat redundant and can be replaced with SCV representations. Benefiting from these SCV representations, our SCV-Stereo can update disparity estimations in an iterative fashion for accurate and efficient stereo matching. Extensive experiments carried out on the KITTI Stereo benchmarks demonstrate that our SCV-Stereo can significantly minimize the trade-off between accuracy and efficiency for stereo matching. Our project page is https://sites.google.com/view/scv-stereo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا