An $H^pm W^mp Z$ interaction at the tree level is common feature of new physics models that feature scalar triplets. In this study, we aim to probe the strength of the aforementioned interaction in a model-agnostic fashion at the futuristic 27 TeV proton-proton collider. We assume that the $H^pm$ couples dominantly to ($W^pm,Z$) and ($t,b$). We specifically study the processes that involve the $H^pm W^mp Z$ vertex at the production level, that is, $p p to H^pm j j$ and $p p to Z H^pm$. Moreover, we look into both $H^pm to W^pm Z,~t b$ decays for either production process. Our investigations reveal that the $H^pm j j$ production process has a greater reach compared to $Z H^pm$. Moreover, the discovery potential of a charged Higgs improves markedly with respect to the earlier studies corresponding to lower centre-of-mass energies. Finally, we recast our results in the context of the popular Georgi-Machacek model.