ﻻ يوجد ملخص باللغة العربية
Modern deep neural networks(DNNs) are vulnerable to adversarial samples. Sparse adversarial samples are a special branch of adversarial samples that can fool the target model by only perturbing a few pixels. The existence of the sparse adversarial attack points out that DNNs are much more vulnerable than people believed, which is also a new aspect for analyzing DNNs. However, current sparse adversarial attack methods still have some shortcomings on both sparsity and invisibility. In this paper, we propose a novel two-stage distortion-aware greedy-based method dubbed as GreedyFool. Specifically, it first selects the most effective candidate positions to modify by considering both the gradient(for adversary) and the distortion map(for invisibility), then drops some less important points in the reduce stage. Experiments demonstrate that compared with the start-of-the-art method, we only need to modify $3times$ fewer pixels under the same sparse perturbation setting. For target attack, the success rate of our method is 9.96% higher than the start-of-the-art method under the same pixel budget. Code can be found at https://github.com/LightDXY/GreedyFool.
Image denoising can remove natural noise that widely exists in images captured by multimedia devices due to low-quality imaging sensors, unstable image transmission processes, or low light conditions. Recent works also find that image denoising benef
We propose LSDAT, an image-agnostic decision-based black-box attack that exploits low-rank and sparse decomposition (LSD) to dramatically reduce the number of queries and achieve superior fooling rates compared to the state-of-the-art decision-based
High-level representation-guided pixel denoising and adversarial training are independent solutions to enhance the robustness of CNNs against adversarial attacks by pre-processing input data and re-training models, respectively. Most recently, advers
Adversarial attacks find perturbations that can fool models into misclassifying images. Previous works had successes in generating noisy/edge-rich adversarial perturbations, at the cost of degradation of image quality. Such perturbations, even when t
In recent years, adversarial attacks have drawn more attention for their value on evaluating and improving the robustness of machine learning models, especially, neural network models. However, previous attack methods have mainly focused on applying