ﻻ يوجد ملخص باللغة العربية
We use the spin-fermion model to describe the CuO$_2$ planes of the high-Tc superconductors. Using a large wavelength approach, we show that the ferromagnetic component of the Cu spin fluctuations couple to the oxygen holes producing a pairing interaction that leads to a superconducting gap whose symmetry is determined by the anisotropy of the Kondo interaction. We calculate Tc as a function of the hole concentration in a mean-field approximation and our numerical results are in good agreement with the experiments.
Superconductivity in lanthanide- and actinide-based heavy-fermion metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f
Magnetism and superconductivity of new heavy fermion compounds CeTIn$_5$ (T=Co, Rh and Ir) are investigated by applying fluctuation exchange approximation to an orbital degenerate Hubbard model. The superconducting phase with $d_{x^2-y^2}$-symmetry i
Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of unsolved problems in all of physics. Among the heavy f-electron systems, CeCoIn5 is one of the most fascinating, as it shares ma
We review application of the SU(4) model of strongly-correlated electrons to cuprate and iron-based superconductors. A minimal self-consistent generalization of BCS theory to incorporate antiferromagnetism on an equal footing with pairing and strong
The weak-coupling renormalization group method is an asymptotically exact method to find superconducting instabilities of a lattice model of correlated electrons. Here we extend it to spin-orbit coupled lattice systems and study the emerging supercon