ﻻ يوجد ملخص باللغة العربية
Orthogonal time frequency space (OTFS) modulation has attracted substantial attention recently due to its great potential of providing reliable communications in high-mobility scenarios. In this paper, we propose a novel hybrid signal detection algorithm for OTFS modulation. By characterizing the input-output relationship of OTFS modulation, we derive the near-optimal symbol-wise maximum a posteriori (MAP) detection algorithm for OTFS modulation, which aims to extract the information of each transmitted symbol based on the corresponding related received symbols. Furthermore, in order to reduce the detection complexity, we propose a partitioning rule that separates the related received symbols into two subsets for detecting each transmitted symbol, according to the corresponding path gains. We then introduce a hybrid detection algorithm to exploit the power discrepancy of each subset, where the MAP detection is applied to the subset with larger channel gains, while the parallel interference cancellation (PIC) detection is applied to the subset with smaller channel gains. Simulation results show that the proposed algorithms can not only approach the performance of the near-optimal symbol-wise MAP algorithms, but also offer a substantial performance gain compared with existing algorithms.
In this paper, we investigate the impacts of transmitter and receiver windows on orthogonal time-frequency space (OTFS) modulation and propose a window design to improve the OTFS channel estimation performance. Assuming ideal pulse shaping filters at
This paper considers the design of beamforming for orthogonal time frequency space modulation assisted non-orthogonal multiple access (OTFS-NOMA) networks, in which a high-mobility user is sharing the spectrum with multiple low-mobility NOMA users. I
Recently proposed orthogonal time frequency space (OTFS) modulation has been considered as a promising candidate for accommodating various emerging communication and sensing applications in high-mobility environments. In this paper, we propose a nove
This paper proposes an off-grid channel estimation scheme for orthogonal time-frequency space (OTFS) systems adopting the sparse Bayesian learning (SBL) framework. To avoid channel spreading caused by the fractional delay and Doppler shifts and to fu
This paper investigates coherent detection for physical-layer network coding (PNC) with short packet transmissions in a two-way relay channel (TWRC). PNC turns superimposed EM waves into network-coded messages to improve throughput in a relay system.