ﻻ يوجد ملخص باللغة العربية
Objective. Clinical trials previously demonstrated the spectacular capacity to elicit visual percepts in blind patients affected with retinal diseases by electrically stimulating the remaining neurons on the retina. However, these implants restored very limited visual acuity and required transcutaneous cables traversing the eyeball, leading to reduced reliability and complex surgery with high postoperative infection risks. Approach. To overcome the limitations imposed by cables, a retinal implant architecture in which near-infrared illumination carries both power and data through the pupil is presented. A high efficiency multi-junction photovoltaic cell transduces the optical power to a CMOS stimulator capable of delivering flexible interleaved sequential stimulation through a diamond microelectrode array. To demonstrate the capacity to elicit a neural response with this approach while complying with the optical irradiance safety limit at the pupil, fluorescence imaging with a calcium indicator is used on a degenerate rat retina. Main results. The power delivered by the laser at safe irradiance of 4 mW/mm2 is shown to be sufficient to both power the stimulator ASIC and elicit a response in retinal ganglion cells (RGCs), with the ability to generate of up to 35 000 pulses per second at the average stimulation threshold. Significance. This confirms the feasibility of wirelessly generating a response in RGCs with a digital stimulation controller that can deliver complex multipolar stimulation patterns at high repetition rates.
Simple RGC consists of a collection of ImageJ plugins to assist researchers investigating retinal ganglion cell (RGC) injury models in addition to helping assess the effectiveness of treatments. The first plugin named RGC Counter accurately calculate
Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, howev
A central challenge in neuroscience is to understand neural computations and circuit mechanisms that underlie the encoding of ethologically relevant, natural stimuli. In multilayered neural circuits, nonlinear processes such as synaptic transmission
The ability of the organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100
Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. However, adaptation also entails computational costs: adaptive code is intrinsically ambiguous, because output symbols c