ﻻ يوجد ملخص باللغة العربية
We define Modular Linear Differential Equations (MLDE) for the level-two congruence subgroups $Gamma_vartheta$, $Gamma^0(2)$ and $Gamma_0(2)$ of $text{SL}_2(mathbb Z)$. Each subgroup corresponds to one of the spin structures on the torus. The pole structures of the fermionic MLDEs are investigated by exploiting the valence formula for the level-two congruence subgroups. We focus on the first and second order holomorphic MLDEs without poles and use them to find a large class of `Fermionic Rational Conformal Field Theories, which have non-negative integer coefficients in the $q$-series expansion of their characters. We study the detailed properties of these fermionic RCFTs, some of which are supersymmetric. This work also provides a starting point for the classification of the fermionic Modular Tensor Category.
We prove a generalization of the Verlinde formula to fermionic rational conformal field theories. The fusion coefficients of the fermionic theory are equal to sums of fusion coefficients of its bosonic projection. In particular, fusion coefficients o
We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite prog
In this paper, we apply the K-theory scheme of classifying the topological insulators/superconductors to classify the topological classes of the massive multi-flavor fermions in anti-de Sitter (AdS) space. In the context of AdS/CFT correspondence, th
For all 4d $mathcal{N} = 4$ SYM theories with simple gauge groups $G$, we show that the residues of the integrands in the $mathcal{N} = 4$ Schur indices, which are related to Gukov-Witten type surface defects in the theories, equal the vacuum charact
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1