ﻻ يوجد ملخص باللغة العربية
Temperature dependencies of excess conductivity, Sigma, have been studied in detail for three FeSe_{0.94} textured polycrystalline samples prepared by partial melting and solid state reaction. It was revealed that both Sigma and its temperature dependence are extremely sensitive to the method of sample preparation. Then, it was shown that in the range from the superconducting transition temperature Tc ~ 9 K up to the characteristic temperature T_01 ~ 19 K, Sigma(T) obeys the classical fluctuation theories of Aslamazov-Larkin (AL) and Hikami-Larkin (Maki-Thompson (MT) term) pointing to the existence of fluctuating Cooper pairs in FeSe at temperatures exceeding double Tc. Like in cuprates, AL-MT crossover at T_0 < T_{01} is observed, which means the appearance of 3D-2D dimensional transition at this temperature. This allows us to determine the coherence length along the c-axis, Xi_c(0) ~ 3 A, and a set of additional samples parameters, including the phase relaxation time, Tau_{Phi}, of fluctuating Cooper pairs, within a simple two-dimensional free-carrier picture. It was shown that Tau_{Phi} in FeSe coincides with that found for YBa2Cu3O7 suggesting that the nature of superconducting fluctuations is very similar for these high-temperature superconductors of different types.
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher
A theory of the fluctuation-induced Nernst effect is developed for arbitrary magnetic fields and temperatures beyond the upper critical field line in a two-dimensional superconductor. First, we derive a simple phenomenological formula for the Nernst
Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity :
We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amp
Recent scanning tunnelling microscopy experiments in NbN thin disordered superconducting films found an emergent inhomogeneity at the scale of tens of nanometers. This inhomogeneity is mirrored by an apparent dimensional crossover in the paraconducti