ترغب بنشر مسار تعليمي؟ اضغط هنا

Fading memory echo state networks are universal

76   0   0.0 ( 0 )
 نشر من قبل Juan-Pablo Ortega
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Echo state networks (ESNs) have been recently proved to be universal approximants for input/output systems with respect to various $L ^p$-type criteria. When $1leq p< infty$, only $p$-integrability hypotheses need to be imposed, while in the case $p=infty$ a uniform boundedness hypotheses on the inputs is required. This note shows that, in the last case, a universal family of ESNs can be constructed that contains exclusively elements that have the echo state and the fading memory properties. This conclusion could not be drawn with the results and methods available so far in the literature.



قيم البحث

اقرأ أيضاً

Echo State Networks (ESNs) are recurrent neural networks that only train their output layer, thereby precluding the need to backpropagate gradients through time, which leads to significant computational gains. Nevertheless, a common issue in ESNs is determining its hyperparameters, which are crucial in instantiating a well performing reservoir, but are often set manually or using heuristics. In this work we optimize the ESN hyperparameters using Bayesian optimization which, given a limited budget of function evaluations, outperforms a grid search strategy. In the context of large volumes of time series data, such as light curves in the field of astronomy, we can further reduce the optimization cost of ESNs. In particular, we wish to avoid tuning hyperparameters per individual time series as this is costly; instead, we want to find ESNs with hyperparameters that perform well not just on individual time series but rather on groups of similar time series without sacrificing predictive performance significantly. This naturally leads to a notion of clusters, where each cluster is represented by an ESN tuned to model a group of time series of similar temporal behavior. We demonstrate this approach both on synthetic datasets and real world light curves from the MACHO survey. We show that our approach results in a significant reduction in the number of ESN models required to model a whole dataset, while retaining predictive performance for the series in each cluster.
We propose an approximation of Echo State Networks (ESN) that can be efficiently implemented on digital hardware based on the mathematics of hyperdimensional computing. The reservoir of the proposed integer Echo State Network (intESN) is a vector con taining only n-bits integers (where n<8 is normally sufficient for a satisfactory performance). The recurrent matrix multiplication is replaced with an efficient cyclic shift operation. The proposed intESN approach is verified with typical tasks in reservoir computing: memorizing of a sequence of inputs; classifying time-series; learning dynamic processes. Such architecture results in dramatic improvements in memory footprint and computational efficiency, with minimal performance loss. The experiments on a field-programmable gate array confirm that the proposed intESN approach is much more energy efficient than the conventional ESN.
In this paper, the echo state network (ESN) memory capacity, which represents the amount of input data an ESN can store, is analyzed for a new type of deep ESNs. In particular, two deep ESN architectures are studied. First, a parallel deep ESN is pro posed in which multiple reservoirs are connected in parallel allowing them to average outputs of multiple ESNs, thus decreasing the prediction error. Then, a series architecture ESN is proposed in which ESN reservoirs are placed in cascade that the output of each ESN is the input of the next ESN in the series. This series ESN architecture can capture more features between the input sequence and the output sequence thus improving the overall prediction accuracy. Fundamental analysis shows that the memory capacity of parallel ESNs is equivalent to that of a traditional shallow ESN, while the memory capacity of series ESNs is smaller than that of a traditional shallow ESN.In terms of normalized root mean square error, simulation results show that the parallel deep ESN achieves 38.5% reduction compared to the traditional shallow ESN while the series deep ESN achieves 16.8% reduction.
In short-term traffic forecasting, the goal is to accurately predict future values of a traffic parameter of interest occurring shortly after the prediction is queried. The activity reported in this long-standing research field has been lately domina ted by different Deep Learning approaches, yielding overly complex forecasting models that in general achieve accuracy gains of questionable practical utility. In this work we elaborate on the performance of Deep Echo State Networks for this particular task. The efficient learning algorithm and simpler parametric configuration of these alternative modeling approaches make them emerge as a competitive traffic forecasting method for real ITS applications deployed in devices and systems with stringently limited computational resources. An extensive comparison benchmark is designed with real traffic data captured over the city of Madrid (Spain), amounting to more than 130 automatic Traffic Readers (ATRs) and several shallow learning, ensembles and Deep Learning models. Results from this comparison benchmark and the analysis of the statistical significance of the reported performance gaps are decisive: Deep Echo State Networks achieve more accurate traffic forecasts than the rest of considered modeling counterparts.
Quantum memory is a key element for quantum repeaters and linear optical quantum computers. In addition to memory, repeaters and computers also require manipulating quantum states by means of unitary transformations, which is generally accomplished u sing interferometric optical setups. We experimentally investigate photon-echo type atom-light interaction for the possibility to combine storage with controlled transformation of quantum states. As an example, we demonstrate unambiguous state discrimination of qubits and qutrits in an Ti:Er:LiNbO$_3$ waveguide cooled to 3K using states encoded into large ensembles of identically prepared photons in superposition of different temporal modes. The high robustness and flexibility of our approach makes it promising for quantum communication and computation as well as precision measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا