ﻻ يوجد ملخص باللغة العربية
Given a quantum circuit, a quantum computer can sample the output distribution exponentially faster in the number of bits than classical computers. A similar exponential separation has yet to be established in generative models through quantum sample learning: given samples from an n-qubit computation, can we learn the underlying quantum distribution using models with training parameters that scale polynomial in n under a fixed training time? We study four kinds of generative models: Deep Boltzmann machine (DBM), Generative Adversarial Networks (GANs), Long Short-Term Memory (LSTM) and Autoregressive GAN, on learning quantum data set generated by deep random circuits. We demonstrate the leading performance of LSTM in learning quantum samples, and thus the autoregressive structure present in the underlying quantum distribution from random quantum circuits. Both numerical experiments and a theoretical proof in the case of the DBM show exponentially growing complexity of learning-agent parameters required for achieving a fixed accuracy as n increases. Finally, we establish a connection between learnability and the complexity of generative models by benchmarking learnability against different sets of samples drawn from probability distributions of variable degrees of complexities in their quantum and classical representations.
$ ewcommand{eps}{varepsilon} $In learning theory, the VC dimension of a concept class $C$ is the most common way to measure its richness. In the PAC model $$ ThetaBig(frac{d}{eps} + frac{log(1/delta)}{eps}Big) $$ examples are necessary and sufficien
We construct a quantum oracle relative to which $mathsf{BQP} = mathsf{QMA}$ but cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist, a counterintuitive result in light of the fact that pseudorandom states can be b
We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query complexity of decision problem
We study the quantum query complexity of finding a certificate for a d-regular, k-level balanced NAND formula. Up to logarithmic factors, we show that the query complexity is Theta(d^{(k+1)/2}) for 0-certificates, and Theta(d^{k/2}) for 1-certificate
We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof