ﻻ يوجد ملخص باللغة العربية
Recently, Transformer based end-to-end models have achieved great success in many areas including speech recognition. However, compared to LSTM models, the heavy computational cost of the Transformer during inference is a key issue to prevent their applications. In this work, we explored the potential of Transformer Transducer (T-T) models for the fist pass decoding with low latency and fast speed on a large-scale dataset. We combine the idea of Transformer-XL and chunk-wise streaming processing to design a streamable Transformer Transducer model. We demonstrate that T-T outperforms the hybrid model, RNN Transducer (RNN-T), and streamable Transformer attention-based encoder-decoder model in the streaming scenario. Furthermore, the runtime cost and latency can be optimized with a relatively small look-ahead.
We live in a world where 60% of the population can speak two or more languages fluently. Members of these communities constantly switch between languages when having a conversation. As automatic speech recognition (ASR) systems are being deployed to
Multi-channel inputs offer several advantages over single-channel, to improve the robustness of on-device speech recognition systems. Recent work on multi-channel transformer, has proposed a way to incorporate such inputs into end-to-end ASR for impr
We investigate a set of techniques for RNN Transducers (RNN-Ts) that were instrumental in lowering the word error rate on three different tasks (Switchboard 300 hours, conversational Spanish 780 hours and conversational Italian 900 hours). The techni
This paper presents a unified end-to-end frame-work for both streaming and non-streamingspeech translation. While the training recipes for non-streaming speech translation have been mature, the recipes for streaming speechtranslation are yet to be bu
Speech emotion recognition is a vital contributor to the next generation of human-computer interaction (HCI). However, current existing small-scale databases have limited the development of related research. In this paper, we present LSSED, a challen