ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Simultaneous Translation with Pseudo References

324   0   0.0 ( 0 )
 نشر من قبل Renjie Zheng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous translation is vastly different from full-sentence translation, in the sense that it starts translation before the source sentence ends, with only a few words delay. However, due to the lack of large scale and publicly available simultaneous translation datasets, most simultaneous translation systems still train with ordinary full-sentence parallel corpora which are not suitable for the simultaneous scenario due to the existence of unnecessary long-distance reorderings. Instead of expensive, time-consuming annotation, we propose a novel method that rewrites the target side of existing full-sentence corpus into simultaneous-style translation. Experiments on Chinese-to-English translation demonstrate about +2.7 BLEU improvements with the addition of newly generated pseudo references.



قيم البحث

اقرأ أيضاً

Simultaneous machine translation (SiMT) aims to translate a continuous input text stream into another language with the lowest latency and highest quality possible. The translation thus has to start with an incomplete source text, which is read progr essively, creating the need for anticipation. In this paper, we seek to understand whether the addition of visual information can compensate for the missing source context. To this end, we analyse the impact of different multimodal approaches and visual features on state-of-the-art SiMT frameworks. Our results show that visual context is helpful and that visually-grounded models based on explicit object region information are much better than commonly used global features, reaching up to 3 BLEU points improvement under low latency scenarios. Our qualitative analysis illustrates cases where only the multimodal systems are able to translate correctly from English into gender-marked languages, as well as deal with differences in word order, such as adjective-noun placement between English and French.
There has been great progress in improving streaming machine translation, a simultaneous paradigm where the system appends to a growing hypothesis as more source content becomes available. We study a related problem in which revisions to the hypothes is beyond strictly appending words are permitted. This is suitable for applications such as live captioning an audio feed. In this setting, we compare custom streaming approaches to re-translation, a straightforward strategy where each new source token triggers a distinct translation from scratch. We find re-translation to be as good or better than state-of-the-art streaming systems, even when operating under constraints that allow very few revisions. We attribute much of this success to a previously proposed data-augmentation technique that adds prefix-pairs to the training data, which alongside wait-k inference forms a strong baseline for streaming translation. We also highlight re-translations ability to wrap arbitrarily powerful MT systems with an experiment showing large improvements from an upgrade to its base model.
Simultaneous translation has many important application scenarios and attracts much attention from both academia and industry recently. Most existing frameworks, however, have difficulties in balancing between the translation quality and latency, i.e ., the decoding policy is usually either too aggressive or too conservative. We propose an opportunistic decoding technique with timely correction ability, which always (over-)generates a certain mount of extra words at each step to keep the audience on track with the latest information. At the same time, it also corrects, in a timely fashion, the mistakes in the former overgenerated words when observing more source context to ensure high translation quality. Experiments show our technique achieves substantial reduction in latency and up to +3.1 increase in BLEU, with revision rate under 8% in Chinese-to-English and English-to-Chinese translation.
Transformer-based models have achieved state-of-the-art performance on speech translation tasks. However, the model architecture is not efficient enough for streaming scenarios since self-attention is computed over an entire input sequence and the co mputational cost grows quadratically with the length of the input sequence. Nevertheless, most of the previous work on simultaneous speech translation, the task of generating translations from partial audio input, ignores the time spent in generating the translation when analyzing the latency. With this assumption, a system may have good latency quality trade-offs but be inapplicable in real-time scenarios. In this paper, we focus on the task of streaming simultaneous speech translation, where the systems are not only capable of translating with partial input but are also able to handle very long or continuous input. We propose an end-to-end transformer-based sequence-to-sequence model, equipped with an augmented memory transformer encoder, which has shown great success on the streaming automatic speech recognition task with hybrid or transducer-based models. We conduct an empirical evaluation of the proposed model on segment, context and memory sizes and we compare our approach to a transformer with a unidirectional mask.
An important concern in training multilingual neural machine translation (NMT) is to translate between language pairs unseen during training, i.e zero-shot translation. Improving this ability kills two birds with one stone by providing an alternative to pivot translation which also allows us to better understand how the model captures information between languages. In this work, we carried out an investigation on this capability of the multilingual NMT models. First, we intentionally create an encoder architecture which is independent with respect to the source language. Such experiments shed light on the ability of NMT encoders to learn multilingual representations, in general. Based on such proof of concept, we were able to design regularization methods into the standard Transformer model, so that the whole architecture becomes more robust in zero-shot conditions. We investigated the behaviour of such models on the standard IWSLT 2017 multilingual dataset. We achieved an average improvement of 2.23 BLEU points across 12 language pairs compared to the zero-shot performance of a state-of-the-art multilingual system. Additionally, we carry out further experiments in which the effect is confirmed even for language pairs with multiple intermediate pivots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا