ﻻ يوجد ملخص باللغة العربية
This paper introduces a new open-sourced Mandarin speech corpus, called DiDiSpeech. It consists of about 800 hours of speech data at 48kHz sampling rate from 6000 speakers and the corresponding texts. All speech data in the corpus is recorded in quiet environment and is suitable for various speech processing tasks, such as voice conversion, multi-speaker text-to-speech and automatic speech recognition. We conduct experiments with multiple speech tasks and evaluate the performance, showing that it is promising to use the corpus for both academic research and practical application. The corpus is available at https://outreach.didichuxing.com/research/opendata/.
This paper introduces Multilingual LibriSpeech (MLS) dataset, a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages, including about 44.5K hours of English and
While recurrent neural networks still largely define state-of-the-art speech recognition systems, the Transformer network has been proven to be a competitive alternative, especially in the offline condition. Most studies with Transformers have been c
Multilingual end-to-end (E2E) models have shown great promise in expansion of automatic speech recognition (ASR) coverage of the worlds languages. They have shown improvement over monolingual systems, and have simplified training and serving by elimi
We present a freely available speech corpus for the Uzbek language and report preliminary automatic speech recognition (ASR) results using both the deep neural network hidden Markov model (DNN-HMM) and end-to-end (E2E) architectures. The Uzbek speech
In this paper, we conduct data selection analysis in building an English-Mandarin code-switching (CS) speech recognition (CSSR) system, which is aimed for a real CSSR contest in China. The overall training sets have three subsets, i.e., a code-switch