ﻻ يوجد ملخص باللغة العربية
SwiftJ0243.6+6124, the first Galactic ultra-luminous X-ray pulsar, was observed during its 2017-2018 outburst with emph{AstroSat} at both sub- and super-Eddington levels of accretionwith X-ray luminosities of $L_{X}{sim}7{times}10^{37}$ and $6{times}10^{38}$$ergs^{-1}$, respectively.Our broadband timing and spectral observations show that X-ray pulsations at ${sim}9.85rm{s}$ have been detected up to 150keV when the source was accreting at the super-Eddington level.The pulse profiles are a strong function of both energy and source luminosity,showing a double-peaked profile with pulse fraction increasing from $sim$$10{%}$ at $1.65rm{keV}$ to 40--80$%$ at $70rm{keV}$.The continuum X-ray spectra are well-modeled with a high energy cut-off power law($Gamma$${sim}$0.6-0.7) and one or two blackbody components with temperatures of $sim$0.35$rm{keV}$ and $1.2rm{keV}$, depending on the accretion level.No iron line emission is observed at sub-Eddington level, while a broad emission feature at around 6.9keV is observed at the super-Eddington level, along with a blackbody radius($121-142rm{km}$) that indicates the presence of optically thick outflows.
Swift J0243.6+6124 is a newly discovered Galactic Be/X-ray binary, revealed in late September 2017 in a giant outburst with a peak luminosity of 2E+39 (d/7 kpc)^2 erg/s (0.1-10 keV), with no formerly reported activity. At this luminosity, Swift J0243
We present a spectral study of the ultraluminous Be/X-ray transient pulsar Swift J0243.6+6124 using Neutron Star Interior Composition Explorer (NICER) observations during the systems 2017--2018 giant outburst. The 1.2--10~keV energy spectrum of the s
Swift J0243.6+6124 was discovered during a giant X-ray outburst in October 2017. While there are numerous studies in the X-ray band, very little is known about the optical counterpart. We have performed an spectral and photometric analysis of the opt
The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {it the Hard X-ray Modulation Telescope} ({it Insight-rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the out
We report on analysis of observations of the bright transient X-ray pulsar src obtained during its 2017-2018 giant outburst with Insight-HXMT, emph{NuSTAR}, and textit{Swift} observatories. We focus on the discovery of a sharp state transition of the