ﻻ يوجد ملخص باللغة العربية
We report measurements of the scale of cosmic homogeneity ($r_{h}$) using the recently released quasar sample of the sixteenth data release of the Sloan Digital Sky Survey (SDSS-IV DR16). We perform our analysis in 2 redshift bins lying in the redshift interval $2.2 < z < 3.2$ by means of the fractal dimension $D_2$. By adopting the usual assumption that $r_{h}$ is obtained when $D_2 sim 2.97$, that is, within 1% of $D_2=3$, we find the cosmic homogeneity scale with a decreasing trend with redshift, and in good agreement with the $Lambda$CDM prediction. Our results confirm the presence of a homogeneity scale in the spatial distribution of quasars as predicted by the fundamental assumptions of the standard cosmological model.
The quasar sample of the fourteenth data release of the Sloan Digital Sky Survey (SDSS-IV DR14) is used to determine the cosmic homogeneity scale in the redshift range $0.80<z<2.24$. We divide the sample into 4 redshift bins, each one with $N_{rm q}
We probe the angular scale of homogeneity in the local Universe using blue galaxies from the SDSS survey as a cosmological tracer. Through the scaled counts in spherical caps, $ mathcal{N}(<theta) $, and the fractal correlation dimension, $mathcal{D}
The assumption that the Universe, on sufficiently large scales, is homogeneous and isotropic is crucial to our current understanding of cosmology. In this paper we test if the observed galaxy distribution is actually homogeneous on large scales. We h
We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale st
We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A ne