ﻻ يوجد ملخص باللغة العربية
We present a method for simulating the dynamics of a mixture of gas and multiple species of large Stokes number dust grains, typical of evolved protoplanetary discs and debris discs. The method improves upon earlier methods, in which only a single grain size could be represented, by capturing the differential backreaction of multiple dust species on the gas. This effect is greater for large dust-to-gas ratios that may be expected in the later stages of the protoplanetary disc life. We benchmark the method against analytic solutions for linear waves, drag and shocks in dust-gas mixtures, and radial drift in a protoplanetary disc showing that the method is robust and accurate.
At present, the giant impact (GI) is the most widely accepted model for the origin of the Moon. Most of the numerical simulations of GI have been carried out with the smoothed particle hydrodynamics (SPH) method. Recently, however, it has been pointe
We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extr
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down a
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact disc
We present a thorough numerical study on the MRI using the smoothed particle magnetohydrodynamics method (SPMHD) with the geometric density average force expression (GDSPH). We perform shearing box simulations with different initial setups and a wide