ﻻ يوجد ملخص باللغة العربية
This paper studies the novel concept of weight correlation in deep neural networks and discusses its impact on the networks generalisation ability. For fully-connected layers, the weight correlation is defined as the average cosine similarity between weight vectors of neurons, and for convolutional layers, the weight correlation is defined as the cosine similarity between filter matrices. Theoretically, we show that, weight correlation can, and should, be incorporated into the PAC Bayesian framework for the generalisation of neural networks, and the resulting generalisation bound is monotonic with respect to the weight correlation. We formulate a new complexity measure, which lifts the PAC Bayes measure with weight correlation, and experimentally confirm that it is able to rank the generalisation errors of a set of networks more precisely than existing measures. More importantly, we develop a new regulariser for training, and provide extensive experiments that show that the generalisation error can be greatly reduced with our novel approach.
Unsupervised domain adaptation (UDA) aims to train a target classifier with labeled samples from the source domain and unlabeled samples from the target domain. Classical UDA learning bounds show that target risk is upper bounded by three terms: sour
Model-Agnostic Meta-Learning (MAML) has become increasingly popular for training models that can quickly adapt to new tasks via one or few stochastic gradient descent steps. However, the MAML objective is significantly more difficult to optimize comp
Although neural networks are widely used, it remains challenging to formally verify the safety and robustness of neural networks in real-world applications. Existing methods are designed to verify the network before use, which is limited to relativel
It is observed in the literature that data augmentation can significantly mitigate membership inference (MI) attack. However, in this work, we challenge this observation by proposing new MI attacks to utilize the information of augmented data. MI att
Understanding the role of (stochastic) gradient descent (SGD) in the training and generalisation of deep neural networks (DNNs) with ReLU activation has been the object study in the recent past. In this paper, we make use of deep gated networks (DGNs