ﻻ يوجد ملخص باللغة العربية
Data management is becoming increasingly important in dealing with the large amounts of data produced by large-scale scientific simulations and instruments. Existing multilevel compression algorithms offer a promising way to manage scientific data at scale, but may suffer from relatively low performance and reduction quality. In this paper, we propose MGARD+, a multilevel data reduction and refactoring framework drawing on previous multilevel methods, to achieve high-performance data decomposition and high-quality error-bounded lossy compression. Our contributions are four-fold: 1) We propose a level-wise coefficient quantization method, which uses different error tolerances to quantize the multilevel coefficients. 2) We propose an adaptive decomposition method which treats the multilevel decomposition as a preconditioner and terminates the decomposition process at an appropriate level. 3) We leverage a set of algorithmic optimization strategies to significantly improve the performance of multilevel decomposition/recomposition. 4) We evaluate our proposed method using four real-world scientific datasets and compare with several state-of-the-art lossy compressors. Experiments demonstrate that our optimizations improve the decomposition/recomposition performance of the existing multilevel method by up to 70X, and the proposed compression method can improve compression ratio by up to 2X compared with other state-of-the-art error-bounded lossy compressors under the same level of data distortion.
Error-bounded lossy compression is a critical technique for significantly reducing scientific data volumes. With ever-emerging heterogeneous high-performance computing (HPC) architecture, GPU-accelerated error-bounded compressors (such as cuSZ+ and c
Efficient error-controlled lossy compressors are becoming critical to the success of todays large-scale scientific applications because of the ever-increasing volume of data produced by the applications. In the past decade, many lossless and lossy co
Error-bounded lossy compression is becoming an indispensable technique for the success of todays scientific projects with vast volumes of data produced during the simulations or instrument data acquisitions. Not only can it significantly reduce data
The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows t
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: idea