ﻻ يوجد ملخص باللغة العربية
This paper investigates a novel active-sensing-based obstacle avoidance paradigm for flying robots in dynamic environments. Instead of fusing multiple sensors to enlarge the field of view (FOV), we introduce an alternative approach that utilizes a stereo camera with an independent rotational DOF to sense the obstacles actively. In particular, the sensing direction is planned heuristically by multiple objectives, including tracking dynamic obstacles, observing the heading direction, and exploring the previously unseen area. With the sensing result, a flight path is then planned based on real-time sampling and uncertainty-aware collision checking in the state space, which constitutes an active sense and avoid (ASAA) system. Experiments in both simulation and the real world demonstrate that this system can well cope with dynamic obstacles and abrupt goal direction changes. Since only one stereo camera is utilized, this system provides a low-cost and effective approach to overcome the FOV limitation in visual navigation.
This paper presents a search-based partial motion planner to generate dynamically feasible trajectories for car-like robots in highly dynamic environments. The planner searches for smooth, safe, and near-time-optimal trajectories by exploring a state
As autonomous robots increasingly become part of daily life, they will often encounter dynamic environments while only having limited information about their surroundings. Unfortunately, due to the possible presence of malicious dynamic actors, it is
Pruning is the art of cutting unwanted and unhealthy plant branches and is one of the difficult tasks in the field robotics. It becomes even more complex when the plant branches are moving. Moreover, the reproducibility of robot pruning skills is ano
In this paper we present a simulation framework for the evaluation of the navigation and localization metrological performances of a robotic platform. The simulator, based on ROS (Robot Operating System) Gazebo, is targeted to a planetary-like resear
The theoretical ability of modular robots to reconfigure in response to complex tasks in a priori unknown environments has frequently been cited as an advantage and remains a major motivator for work in the field. We present a modular robot system ca