ﻻ يوجد ملخص باللغة العربية
The discovery of two-dimensional (2D) systems hosting intrinsic long-range magnetic order represents a seminal addition to the rich physical landscape of van der Waals (vdW) materials. CrI3 has emerged as perhaps the most salient example, as the interdependence of crystalline structure and magnetic order, along with strong light-matter interactions provides a promising platform to explore the optical control of magnetic, vibrational, and charge degrees of freedom at the 2D limit. However, the fundamental question of how this relationship between structure and magnetism manifests on their intrinsic timescales has rarely been explored. Here, we use ultrafast optical spectroscopy to probe magnetic and vibrational dynamics in CrI3, revealing demagnetization dynamics governed by spin-flip scattering and remarkably, a strong transient exchange-mediated interaction between lattice vibrations and spin oscillations. The latter yields a coherent spin-coupled phonon mode that is highly sensitive to the helicity of the driving pulse in the magnetically ordered phase. Our results shed light on the nature of spin-lattice coupling in vdW magnets on ultrafast timescales and highlight their potential for applications requiring non-thermal, high-speed control of magnetism at the nanoscale.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl,
Van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW mat
Raman scattering is a ubiquitous phenomenon in light-matter interactions which reveals a materials electronic, structural and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material propert
Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals
Magnetic phase transitions often occur spontaneously at specific critical temperatures. The presence of more than one critical temperature (Tc) has been observed in several compounds where the coexistence of competing magnetic orders highlights the i