ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Poisson Log-normal Model with Regularized Time Structure for Mortality Projection of Multi-population

145   0   0.0 ( 0 )
 نشر من قبل Zhen Liu
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The improvement of mortality projection is a pivotal topic in the diverse branches related to insurance, demography, and public policy. Motivated by the thread of Lee-Carter related models, we propose a Bayesian model to estimate and predict mortality rates for multi-population. This new model features in information borrowing among populations and properly reflecting variations of data. It also provides a solution to a long-time overlooked problem: model selection for dependence structures of population-specific time parameters. By introducing a Dirac spike function, simultaneous model selection and estimation for population-specific time effects can be achieved without much extra computation cost. We use the Japanese mortality data from Human Mortality Database to illustrate the desirable properties of our model.



قيم البحث

اقرأ أيضاً

Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in deat h counts is relatively high, and so the underlying mortality levels are unclear. We present a Bayesian hierarchical model to estimate mortality at the subnational level. The model builds on characteristic age patterns in mortality curves, which are constructed using principal components from a set of reference mortality curves. Information on mortality rates are pooled across geographic space and smoothed over time. Testing of the model shows reasonable estimates and uncertainty levels when the model is applied to both simulated data which mimic US counties, and real data for French departments. The estimates produced by the model have direct applications to the study of subregional health patterns and disparities.
Mortality is different across countries, states and regions. Several empirical research works however reveal that mortality trends exhibit a common pattern and show similar structures across populations. The key element in analyzing mortality rate is a time-varying indicator curve. Our main interest lies in validating the existence of the common trends among these curves, the similar gender differences and their variability in location among the curves at the national level. Motivated by the empirical findings, we make the study of estimating and forecasting mortality rates based on a semi-parametric approach, which is applied to multiple curves with the shape-related nonlinear variation. This approach allows us to capture the common features contained in the curve functions and meanwhile provides the possibility to characterize the nonlinear variation via a few deviation parameters. These parameters carry an instructive summary of the time-varying curve functions and can be further used to make a suggestive forecast analysis for countries with barren data sets. In this research the model is illustrated with mortality rates of Japan and China, and extended to incorporate more countries.
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warrantin g increased efforts in monitoring this indicator in addition to the U5MR. A Bayesian splines regression model is presented for estimating neonatal mortality rates (NMR) for all countries. In the model, the relationship between NMR and U5MR is assessed and used to inform estimates, and spline regression models are used to capture country-specific trends. As such, the resulting NMR estimates incorporate trends in overall child mortality while also capturing data-driven trends. The model is fitted to 195 countries using the database from the United Nations Interagency Group for Child Mortality Estimation, producing estimates from 1990, or earlier if data are available, until 2015. The results suggest that, above a U5MR of 34 deaths per 1000 live births, at the global level, a 1 per cent increase in the U5MR leads to a 0.6 per cent decrease in the ratio of NMR to U5MR. Below a U5MR of 34 deaths per 1000 live births, the proportion of deaths under-five that are neonatal is constant at around 54 per cent. However, the relationship between U5MR and NMR varies across countries. The model has now been adopted by the United Nations Inter-agency Group for Child Mortality Estimation.
138 - Niels Oppermann 2014
The extraction of foreground and CMB maps from multi-frequency observations relies mostly on the different frequency behavior of the different components. Existing Bayesian methods additionally make use of a Gaussian prior for the CMB whose correlati on structure is described by an unknown angular power spectrum. We argue for the natural extension of this by using non-trivial priors also for the foreground components. Focusing on diffuse Galactic foregrounds, we propose a log-normal model including unknown spatial correlations within each component and cross-correlations between the different foreground components. We present case studies at low resolution that demonstrate the superior performance of this model when compared to an analysis with flat priors for all components.
Forecasts of mortality provide vital information about future populations, with implications for pension and health-care policy as well as for decisions made by private companies about life insurance and annuity pricing. Stochastic mortality forecast s allow the uncertainty in mortality predictions to be taken into consideration when making policy decisions and setting product prices. Longer lifespans imply that forecasts of mortality at ages 90 and above will become more important in such calculations. This paper presents a Bayesian approach to the forecasting of mortality that jointly estimates a Generalised Additive Model (GAM) for mortality for the majority of the age-range and a parametric model for older ages where the data are sparser. The GAM allows smooth components to be estimated for age, cohort and age-specific improvement rates, together with a non-smoothed period effect. Forecasts for the United Kingdom are produced using data from the Human Mortality Database spanning the period 1961-2013. A metric that approximates predictive accuracy under Leave-One-Out cross-validation is used to estimate weights for the `stacking of forecasts with different points of transition between the GAM and parametric elements. Mortality for males and females are estimated separately at first, but a joint model allows the asymptotic limit of mortality at old ages to be shared between sexes, and furthermore provides for forecasts accounting for correlations in period innovations. The joint and single sex model forecasts estimated using data from 1961-2003 are compared against observed data from 2004-2013 to facilitate model assessment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا