ﻻ يوجد ملخص باللغة العربية
In this paper, we focus on computational aspects of the Wasserstein barycenter problem. We propose two algorithms to compute Wasserstein barycenters of $m$ discrete measures of size $n$ with accuracy $e$. The first algorithm, based on mirror prox with a specific norm, meets the complexity of celebrated accelerated iterative Bregman projections (IBP), namely $widetilde O(mn^2sqrt n/e)$, however, with no limitations in contrast to the (accelerated) IBP, which is numerically unstable under small regularization parameter. The second algorithm, based on area-convexity and dual extrapolation, improves the previously best-known convergence rates for the Wasserstein barycenter problem enjoying $widetilde O(mn^2/e)$ complexity.
In this paper we propose to perform model ensembling in a multiclass or a multilabel learning setting using Wasserstein (W.) barycenters. Optimal transport metrics, such as the Wasserstein distance, allow incorporating semantic side information such
This work presents an algorithm to sample from the Wasserstein barycenter of absolutely continuous measures. Our method is based on the gradient flow of the multimarginal formulation of the Wasserstein barycenter, with an additive penalization to acc
The Wasserstein barycenter has been widely studied in various fields, including natural language processing, and computer vision. However, it requires a high computational cost to solve the Wasserstein barycenter problem because the computation of th
Several issues in machine learning and inverse problems require to generate discrete data, as if sampled from a model probability distribution. A common way to do so relies on the construction of a uniform probability distribution over a set of $N$ p
Convex composition optimization is an emerging topic that covers a wide range of applications arising from stochastic optimal control, reinforcement learning and multi-stage stochastic programming. Existing algorithms suffer from unsatisfactory sampl