Query-Key Normalization for Transformers


الملخص بالإنكليزية

Low-resource language translation is a challenging but socially valuable NLP task. Building on recent work adapting the Transformers normalization to this setting, we propose QKNorm, a normalization technique that modifies the attention mechanism to make the softmax function less prone to arbitrary saturation without sacrificing expressivity. Specifically, we apply $ell_2$ normalization along the head dimension of each query and key matrix prior to multiplying them and then scale up by a learnable parameter instead of dividing by the square root of the embedding dimension. We show improvements averaging 0.928 BLEU over state-of-the-art bilingual benchmarks for 5 low-resource translation pairs from the TED Talks corpus and IWSLT15.

تحميل البحث