ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey on Deep Neural Network Compression: Challenges, Overview, and Solutions

228   0   0.0 ( 0 )
 نشر من قبل Rahul Mishra
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Neural Network (DNN) has gained unprecedented performance due to its automated feature extraction capability. This high order performance leads to significant incorporation of DNN models in different Internet of Things (IoT) applications in the past decade. However, the colossal requirement of computation, energy, and storage of DNN models make their deployment prohibitive on resource constraint IoT devices. Therefore, several compression techniques were proposed in recent years for reducing the storage and computation requirements of the DNN model. These techniques on DNN compression have utilized a different perspective for compressing DNN with minimal accuracy compromise. It encourages us to make a comprehensive overview of the DNN compression techniques. In this paper, we present a comprehensive review of existing literature on compressing DNN model that reduces both storage and computation requirements. We divide the existing approaches into five broad categories, i.e., network pruning, sparse representation, bits precision, knowledge distillation, and miscellaneous, based upon the mechanism incorporated for compressing the DNN model. The paper also discussed the challenges associated with each category of DNN compression techniques. Finally, we provide a quick summary of existing work under each category with the future direction in DNN compression.



قيم البحث

اقرأ أيضاً

This paper provides a systematic and comprehensive survey that reviews the latest research efforts focused on machine learning (ML) based performance improvement of wireless networks, while considering all layers of the protocol stack (PHY, MAC and n etwork). First, the related work and paper contributions are discussed, followed by providing the necessary background on data-driven approaches and machine learning for non-machine learning experts to understand all discussed techniques. Then, a comprehensive review is presented on works employing ML-based approaches to optimize the wireless communication parameters settings to achieve improved network quality-of-service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis, MAC analysis and network prediction approaches, followed by subcategories within each. Finally, open challenges and broader perspectives are discussed.
Deep learning has made breakthroughs and substantial in many fields due to its powerful automatic representation capabilities. It has been proven that neural architecture design is crucial to the feature representation of data and the final performan ce. However, the design of the neural architecture heavily relies on the researchers prior knowledge and experience. And due to the limitations of human inherent knowledge, it is difficult for people to jump out of their original thinking paradigm and design an optimal model. Therefore, an intuitive idea would be to reduce human intervention as much as possible and let the algorithm automatically design the neural architecture. Neural Architecture Search (NAS) is just such a revolutionary algorithm, and the related research work is complicated and rich. Therefore, a comprehensive and systematic survey on the NAS is essential. Previously related surveys have begun to classify existing work mainly based on the key components of NAS: search space, search strategy, and evaluation strategy. While this classification method is more intuitive, it is difficult for readers to grasp the challenges and the landmark work involved. Therefore, in this survey, we provide a new perspective: beginning with an overview of the characteristics of the earliest NAS algorithms, summarizing the problems in these early NAS algorithms, and then providing solutions for subsequent related research work. Besides, we conduct a detailed and comprehensive analysis, comparison, and summary of these works. Finally, we provide some possible future research directions.
An important task in the Internet of Things (IoT) is field monitoring, where multiple IoT nodes take measurements and communicate them to the base station or the cloud for processing, inference, and analysis. This communication becomes costly when th e measurements are high-dimensional (e.g., videos or time-series data). The IoT networks with limited bandwidth and low power devices may not be able to support such frequent transmissions with high data rates. To ensure communication efficiency, this article proposes to model the measurement compression at IoT nodes and the inference at the base station or cloud as a deep neural network (DNN). We propose a new framework where the data to be transmitted from nodes are the intermediate outputs of a layer of the DNN. We show how to learn the model parameters of the DNN and study the trade-off between the communication rate and the inference accuracy. The experimental results show that we can save approximately 96% transmissions with only a degradation of 2.5% in inference accuracy. Our findings have the potentiality to enable many new IoT data analysis applications generating large amount of measurements.
In this work, we propose an effective scheme (called DP-Net) for compressing the deep neural networks (DNNs). It includes a novel dynamic programming (DP) based algorithm to obtain the optimal solution of weight quantization and an optimization proce ss to train a clustering-friendly DNN. Experiments showed that the DP-Net allows larger compression than the state-of-the-art counterparts while preserving accuracy. The largest 77X compression ratio on Wide ResNet is achieved by combining DP-Net with other compression techniques. Furthermore, the DP-Net is extended for compressing a robust DNN model with negligible accuracy loss. At last, a custom accelerator is designed on FPGA to speed up the inference computation with DP-Net.
Deep neural networks (DNNs) have become the state-of-the-art technique for machine learning tasks in various applications. However, due to their size and the computational complexity, large DNNs are not readily deployable on edge devices in real-time . To manage complexity and accelerate computation, network compression techniques based on pruning and quantization have been proposed and shown to be effective in reducing network size. However, such network compression can result in irregular matrix structures that are mismatched with modern hardware-accelerated platforms, such as graphics processing units (GPUs) designed to perform the DNN matrix multiplications in a structured (block-based) way. We propose MPDCompress, a DNN compression algorithm based on matrix permutation decomposition via random mask generation. In-training application of the masks molds the synaptic weight connection matrix to a sub-graph separation format. Aided by the random permutations, a hardware-desirable block matrix is generated, allowing for a more efficient implementation and compression of the network. To show versatility, we empirically verify MPDCompress on several network models, compression rates, and image datasets. On the LeNet 300-100 model (MNIST dataset), Deep MNIST, and CIFAR10, we achieve 10 X network compression with less than 1% accuracy loss compared to non-compressed accuracy performance. On AlexNet for the full ImageNet ILSVRC-2012 dataset, we achieve 8 X network compression with less than 1% accuracy loss, with top-5 and top-1 accuracies of 79.6% and 56.4%, respectively. Finally, we observe that the algorithm can offer inference speedups across various hardware platforms, with 4 X faster operation achieved on several mobile GPUs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا