ﻻ يوجد ملخص باللغة العربية
Nonlocal operators of fractional type are a popular modeling choice for applications that do not adhere to classical diffusive behavior; however, one major challenge in nonlocal simulations is the selection of model parameters. In this work we propose an optimization-based approach to parameter identification for fractional models with an optional truncation radius. We formulate the inference problem as an optimal control problem where the objective is to minimize the discrepancy between observed data and an approximate solution of the model, and the control variables are the fractional order and the truncation length. For the numerical solution of the minimization problem we propose a gradient-based approach, where we enhance the numerical performance by an approximation of the bilinear form of the state equation and its derivative with respect to the fractional order. Several numerical tests in one and two dimensions illustrate the theoretical results and show the robustness and applicability of our method.
We propose a bilevel optimization approach for the estimation of parameters in nonlocal image denoising models. The parameters we consider are both the fidelity weight and weights within the kernel of the nonlocal operator. In both cases we investiga
We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic nonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis
Partial differential equations (PDEs) are used, with huge success, to model phenomena arising across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDE models fail to adequately mode
Moving Morphable Component (MMC) based topology optimization approach is an explicit algorithm since the boundary of the entity explicitly described by its functions. Compared with other pixel or node point-based algorithms, it is optimized through t
We present AUQ-ADMM, an adaptive uncertainty-weighted consensus ADMM method for solving large-scale convex optimization problems in a distributed manner. Our key contribution is a novel adaptive weighting scheme that empirically increases the progres