ﻻ يوجد ملخص باللغة العربية
We report analytically known states at non-zero temperature which may serve as a powerful tool to reveal common topological and thermodynamic properties of systems ranging from the QCD phase diagram to topological phase transitions in condensed matter materials. In the holographically dual gravity theory, these are analytic solutions to a five-dimensional non-linear-sigma (Skyrme) model dynamically coupled to Einstein gravity. This theory is shown to be holographically dual to $mathcal{N}=4$ Super-Yang-Mills theory coupled to an $SU(2)$-current. All solutions are fully backreacted asymptotically Anti-de Sitter~(AdS) black branes or holes. One family of global AdS black hole solutions contains non-Abelian gauge field configurations with positive integer Chern numbers and finite energy density. Larger Chern numbers increase the Hawking-Page transition temperature. In the holographically dual field theory this indicates a significant effect on the deconfinement phase transition. Black holes with one Hawking temperature can have distinct Chern numbers, potentially enabling topological transitions. A second family of analytic solutions, rotating black branes, is also provided. These rotating solutions induce states with propagating charge density waves in the dual field theory. We compute the Hawking temperature, entropy density, angular velocity and free energy for these black holes/branes. These correspond to thermodynamic data in the dual field theory. For these states the energy-momentum tensor, (non-)conserved current, and topological charge are interpreted.
We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipa
We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $the
We study the chiral vortical conductivity in a holographic Weyl semimetal model, which describes a topological phase transition from the strongly coupled topologically nontrivial phase to a trivial phase. We focus on the temperature dependence of the
Two-component fermionic superfluids on a lattice with an external non-Abelian gauge field give access to a variety of topological phases in presence of a sufficiently large spin imbalance. We address here the important issue of superfluidity breakdow
We present a holographic model of a topological Weyl semimetal. A key ingredient is a time-reversal breaking parameter and a mass deformation. Upon varying the ratio of mass to time-reversal breaking parameter the model undergoes a quantum phase tran